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ABSTRACT
Data-intensive key-value stores based on the Log-Structured

Merge-Tree are used in numerous modern applications rang-

ing from social media and data science to cloud infrastructure.

We show that such designs exhibit an intrinsic contention be-

tween the costs of point reads, writes and memory, and that

this trade-off deteriorates as the data size grows. The root of

the problem is that in all existing designs, the capacity ratio

between any pair of levels is fixed. This causes write cost

to increase with the data size while yielding exponentially

diminishing returns for point reads and memory.

We introduce the Log-StructuredMerge-Bush (LSM-Bush),

a new data structure that sets increasing capacity ratios

between adjacent pairs of smaller levels. As a result, smaller

levels get lazier by gathering more runs before merging them.

By using a doubly-exponential ratio growth rate, LSM-bush

brings write cost down from O(logN ) to O(log logN ), and it

can trade this gain to either improve point reads or memory.

Thus, it enables more scalable trade-offs all around.

We further introduce Wacky, a design continuum that

includes LSM-Bush as well as all state-of-the-art merge poli-

cies, from laziest to greediest, and can assume any of them

within a single implementation. Wacky encompasses a vast

space of performance properties, including ones that favor

range reads, and it can be searched analytically to find the

design that performs best for a given workload in practice.
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Figure 1: Existing designs need to sacrifice increas-
ingly more write performance or more memory to
hold point read performance fixed as the data grows.

1 SCALINGWITH DATA
Key-Value Stores are Everywhere.A key-value store (KV-

store) is a database that maps from key identifiers to their

corresponding data values. KV-stores are a driving force

behind the NoSQL revolution, and they are used by numerous

and diverse applications including graph processing [8, 15],

crypto-currencies [49], online transaction processing [27],

time-series data management [36, 37, 52], flash translation

layer design [22], and spatial data management [58].

Driving Industry Trends. There are three trends that drive
the design of KV-stores. First, the proportion of write oper-

ations in many applications is increasing [53]; we are col-

lecting more data more quickly. Second, for data-intensive

applications, the size of the raw data is larger than the avail-

able memory (DRAM), and so most data resides in storage

devices, which are orders of magnitude slower than memory

devices. Third, the advent of flash-based solid state drives

(SSDs) has made write operations costlier than read opera-

tions [1]. Due to these trends, many KV-stores increasingly

optimize for input/output (I/O) operations in storage, trying

to rapidly ingest application writes while still enabling fast

application reads under a tight memory budget.

LSM-Tree. To accommodate these trends, many modern KV-

stores rely on the Log-Structured Merge-tree (LSM-tree) [46]

as their storage engine. LSM-tree buffers writes in memory,

flushes them as sorted runs to storage, and merges similarly-

sized runs across multiple levels of exponentially increasing

capacities. Modern designs use in-memory fence pointers

to allow reads to find the relevant key range at each run



quickly, and they use in-memory Bloom filters to allow point

reads to skip runs that do not contain a target entry. Such de-

signs are used by LevelDB [29] and BigTable [19] at Google,

RocksDB [28] at Facebook, Cassandra [38], HBase [6] and

Accumulo [4] at Apache, Voldemort [41] at LinkedIn, Dy-

namo [26] at Amazon, WiredTiger [59] at MongoDB [44],

and bLSM [53] at Yahoo.

Problem 1: Three-Way Trade-Off. Existing LSM-tree de-

signs exhibit an intrinsic trade-off between the costs of reads,

writes, and memory. It is not possible to simultaneously

achieve the best case on all three metrics [10]. For example,

in order to enable faster point reads, we either need to (1) use

more memory to enlarge the Bloom filters and thereby re-

duce read I/Os due to false positives, or to (2) increase write

cost by compacting runs more greedily to restrict the number

of runs across which false positives can be incurred. With

existing designs, tuning to improve on one of these three

metrics makes either one or both of the other metrics worse.

As a result, no single design/tuning performs well universally

as the trade-off has to be managed for the given workload

and memory budget.

Problem 2: Worse Trade-Offs as the Data Grows. To ex-
acerbate the problem, Figure 1 shows that the trade-off de-

teriorates as the data grows. The curves in the figure repre-

sent different LSM-tree variants, each with a distinct trade-

off domain. We include Tiering and Leveling, which are

used broadly in industry. We also include newer designs

that optimize memory across the Bloom filters, namely Tier-

ing/Monkey [20, 21] and Lazy Leveling [23]. The x-axis mea-

sures write cost as write-amplification (WA), defined as the

average number of times a data entry gets rewritten due to

compactions. The y-axis measures memory as the average

number of bits per entry needed across all Bloom filters to

fix the expected number of false positives to a small constant

(0.1 in this example). This allows plotting the write/memory

trade-offs for each design while holding point read cost fixed,

though the curves look similar relative to each other for any

two of these metrics plotted against each other while holding

the third fixed. We generate the curve for each design by

varying the capacity ratio, which dictates merge greediness

across levels, to enumerate all possible trade-offs. The curves

are drawn using models that we explain in detail later on.

The curves for Tiering/Monkey and Lazy Leveling com-

plement each other and thus comprise the Pareto frontier

of best existing trade-offs with respect to writes, memory

and point reads (their curves meet at the point where the ca-

pacity ratio is set to 2, in which case their behaviors become

identical [23]). The figure shows that as the data grows, the
Pareto frontier moves outwards leading to worse trade-offs. For
example, assume a starting point of Tiering/Monkey with

10 bits per entry available for its Bloom filters. With 32GB

of data, WA is ≈ 6. To support data growth to 32PB while

holding point read cost fixed, we either have to pay over

2x in WA (e.g., moving rightwards in Figure 1) or have to

reserve ≈ 50% more bits per entry for the Bloom filter (e.g.,

moving upwards in Figure 1). The trade-off deteriorates at

an even faster rate for plain Tiered and Leveled designs.

Write and Point Read Intensive Workloads. The poten-
tial for enabling more scalable trade-offs depends on the

workload. While frequent compactions are needed to sup-

port fast range reads, many modern applications ranging

from e-commerce [26] and blockchain [49] to multi-player

gaming [25] exhibit write-intensive workloads with mostly

or only point reads. We refer to such workloads as write

and point read intensive, or WPI for short. Many LSM-tree

designs have been built specifically to support such work-

loads. Examples include Dynamo [26], Voldemort [41], and

LSM-trie [60], which index entries in the LSM-tree based

on hashes of keys. For WPI workloads, there are untapped

opportunities for improving the scalability of the three-way

read/write/memory trade-off.

Insight: Not all Compactions are Created Equal. In this

paper, we analyze how compaction overheads emanate from

across different levels and the amount by which each com-

paction helps to curb the memory footprint and/or point

read cost. We show that not all compactions are as impactful:

some improve point reads and memory significantly while

others improve them negligibly. The root cause is a cost em-

anation asymmetry. Larger levels contribute the most to the

cost of point reads and memory. On the other hand, com-

paction overheads at smaller levels increase logarithmically

with the data size while yielding exponentially diminishing

returns. Existing designs are unable to address this prob-

lem because of a core in-built inflexibility: they assign fixed,

uniform capacity ratios between any pair of adjacent levels.

TheLog-StructuredMerge-Bush.We introduce LSM-bush,

a new data structure for WPI applications that rids them of

non-impactful compactions. It does this by setting increasing

capacity ratios between smaller pairs of adjacent levels. As a

result, smaller levels get lazier as they gather more runs be-

fore merging them. In this way, non-impactful compactions

are eliminated, and so overall compaction costs grow more

slowly with the data size. By exposing the ratios’ growth rate

as a manipulable knob, LSM-bush allows the gain in write

cost to be traded for either memory or point reads. Hence,

it unravels a superior and more scalable Pareto frontier of

read/write/memory trade-offs. Our previous work has im-

proved the scalability of this trade-off by optimizing memory

among the Bloom filters with Monkey [20, 21] and by con-

trolling merge greediness within levels with Lazy Leveling

[23]. LSM-bush builds on this work by further allowing to

control of merge greediness across levels. We show that this



is a necessary next step to continue pushing the scalability

envelope towards its theoretical and practical limits.

The Wacky Continuum. We further introduce Wacky:

Amorphous Calculable Key-Value Store. Wacky is amor-
phous in that it includes LSM-bush along with the whole

spectrum of merge policies, from laziest to greediest, and

it can instantiate any of them using a small and finite set

of knobs within a single unified implementation. Wacky is

calculable in that it includes a set of analytical models that

allow searching for the merge policy that performs best for

a given workload. In the spirit of our long-term vision on

distilling a Periodic Table of Data Structures [33, 34], Wacky

organizes a rich, vast and complex space into a design con-

tinuum [31] that allows to tractably reason about the impact

of every design decision on the overall system’s behavior.

Contributions.We summarize our contributions as follows.

• We show that existing LSM-tree designs are subject to

a three-way read/write/memory trade-off that scales

sub-optimally for WPI workloads.

• For WPI workloads with some range reads, we show

how to adjust the capacity ratio of the largest level to

improve write cost from O(logN ) to O(
√
logN ) while

keeping the same read and memory costs. We call this

design Capped Lazy Leveling (CLL).

• For WPI workloads with no range reads, we generalize

CLL to set increasing capacity ratios between smaller

levels so that newer data is merged more lazily. By

using a doubly-exponential ratio growth rate, write

cost decreases to O(log logN ) without hurting point

read or memory costs. We further show how to use

hash-tables instead of Bloom filters at smaller levels to

control CPU overheads. We call this design LSM-bush.

• We introduceWacky, a design continuum that includes

the whole spectrum of merge policies and can be navi-

gated to find the best design for a given workload.

• Using an implementation and experimental analysis

over RocksDB, we show that Wacky (1) significantly

outperforms existing designs for WPI workloads, and

(2) matches their performance for other workloads

without requiring manual tuning.

2 BACKGROUND: MERGE POLICIES
In this section, we give the necessary background on existing

LSM-tree designs and their cost properties.

High-Level Overview. LSM-tree organizes runs in storage

into L levels of exponentially increasing capacities by using

a fixed capacity ratio T between each pair of levels. As a

result, the number of levels L is O(logT (N/F )), where N is the

data size and F is the buffer size. Application writes are first

buffered in memory and get flushed to Level 1 in storage as

a sorted run each time the buffer fills up. Whenever Level i

reaches capacity, all runs within that level get sort-merged
1

and the resulting run is pushed to Level i+1. Thus, data
moves to larger levels as it ages.

Fence Pointers. To facilitate read performance, modern

designs use in-memory fence pointers with the min/max key

in every block of every run [28]. The fence pointers enable

reads to find the block that contains the relevant key range

at each run with one I/O.

Bloom Filters. To further facilitate point read performance,

modern designs use an in-memory Bloom filter for every run

to allow point reads to skip runs that do not contain a target

entry. As each Bloom filter leads to one wasted I/O with a

probability given by its false positive rate (FPR), the expected

number of wasted I/Os per point read can be measured as the

sum of FPRs across all filters, which we denote as p. In this

way, the worst-case cost of a point read can be approximated

as 1+p (one I/O to fetch the target entry plus p I/Os due to

false positives). We continue to use p as a measure of point

read cost throughout the paper, and we show how to model

point read cost more precisely in Section 5.

Merge Trade-Offs. The greediness with which LSM-tree

merges runs controls an important read/write/memory trade-

off. In particular, reducing merge greediness decreases the

amortized cost of writes while increasing the number of runs

in the system. Having more runs, in turn, either causes the

Bloom filters’ sum of FPRs p to increase and to thereby in-

crease point read cost, or it requires assigning more memory

to the filters to keep point read cost fixed. In this way, the

merge policy dictates the read/write/memory cost balances

that can be achieved. For readability throughout the paper,

we focus on the write vs. memory cost trade-off while hold-

ing point read cost fixed, though we continually point out

how achieving a gain in any one of these metrics can be

traded for a gain in either one or both of the other two.

MergePolicies. Figure 2 illustrates the three state-of-the-art
merge policies, which we now analyze. We measure merge

overheads in terms of write-amplification (WA), the average

number of merge operations that each entry participates in

while traveling from the smallest to largest level. Wemeasure

memory in terms of the average number of bits per entry

needed across all Bloom filters to achieve a given value for p,
the sum of FPRs. This allows us to study memory/merge

trade-offs while holding the cost of point reads fixed. Our

analysis is in terms of worst-case costs.

Leveling. With Leveling [28, 29, 46], a merge is triggered

at a level as soon as a new run comes in. This leads to each

entry getting merged on averageO(T ) times within each level

1
While we refer to merge operations as occurring at the granularity of

whole runs, some designs partition each run into files and merge smaller

groups of files at a time to avoid performance slumps [28]. The designs

discussed in this paper are compatible with both approaches.
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Figure 2: An illustration of the largest three levels with Tiered, Lazy Leveled and Leveled designs, all with a base
ratio T of 4 and with Bloomptimized filters set to have an overall FPR sum p of 0.1, or 10%.

before the level fills up. WA is thereforeO(T ·L). As each level

contains at most one run, there are O(L) runs in the system.

Leveling is the most greedy merge policy, and as such its

write cost is highest. We analyze its memory footprint below.

Tiering. With Tiering [5, 35], each level gathers runs and

merges them only when it reaches capacity. As each entry

participates in one merge operation at each level, WA is O(L).

At the same time, each level contains at most O(T ) runs and

so there are O(T · L) runs in the system. Tiering is a lazier

merge policy than Leveling.

Uniform Bloom Filters Memory. The number of bits per

entry needed for a Bloom filter to have an FPR of ϵ is
ln(1/ϵ)

ln(2)2

[56], or more simply O(ln(1/ϵ)). LSM-tree designs in industry

set the same FPR to filters at all levels [5, 6, 28, 29]. This

means that in order to keep the FPR sum p fixed, the FPR

for each individual filter has to decrease at a rate of p/L with

Leveling or p/(L ·T )with Tiering with respect to the number of

levels L. As most of the memory overhead emanates from the

largest level (since it contains exponentially more entries),

we derive the memory complexity based on the largest level

asO(ln(L/p)) bits per entry with Leveling orO(ln((L ·T )/p))with

Tiering. These expressions show that having to decrease the

FPR for filter/s at the largest level requires more bits per

entry as the data size increases to keep point read cost fixed.

Bloomptimized Filters Memory. A better approach is to

keep the FPR at the largest level fixed as the data grows and

to instead set decreasing FPRs to filters at smaller levels to

prevent the sum of FPRs p from increasing. The intuition is

that each false positive costs one I/O regardless of the level

(due to the fence pointers), yet it is much cheaper in terms

of memory to achieve lower FPRs at smaller levels as they

contain exponentially fewer entries. We showed that the

optimal approach is to set exponentially decreasing FPRs to

smaller levels relative to the largest level’s FPR [20, 21].While

this entails having linearly more bits per entry at smaller

levels, the number of entries for smaller levels decreases at a

much faster exponential rate, and this results in smaller levels

still requiring an exponentially decreasing proportion of the

overall memory footprint. As a result, the memory footprint

becomes O(ln 1/p) bits per entry with Leveling or O(lnT/p)

with Tiering. We coin this approach Bloomptimization, and
we illustrate it in action in Figure 2.

Cost Emanation Asymmetry. Having exponentially de-

creasing FPRs for Bloom filters at smaller levels opens up

a new avenue for improved merge policies for WPI work-

loads. The reason is that it creates an asymmetry in how the

costs of writes, point reads and memory are derived from

across different levels. In particular, the sum of FPRs p (and

thus point read cost) mostly emanates from larger levels,

which have the highest FPRs. Similarly, the Bloom filters’

memory footprint mostly emanates from the largest levels

as they contain most of the entries. On the other hand, write-

amplification emanates equally from all levels (i.e., O(1) per
level with Tiering and O(T ) per level with Leveling). This

means that the merge operations at smaller levels entail a lot

of overhead, which does not significantly help to curb the

costs of point reads or memory.

Lazy Leveling.With Lazy Leveling, we showed that amerge

policy can leverage this asymmetry to reduce merge over-

heads by using Tiering for Levels 1 to L−1 and Leveling

at Level L [23]. In this way, WA is O(T+L) as an entry gets

merged O(1) time at each of Levels 1 to L−1 and O(T ) times

at Level L. Since there is one run at Level L with a fixed

FPR while smaller levels’ filters are assigned exponentially

decreasing FPRs as the data grows, the memory footprint

remains O(ln 1/p) bits per entry. As Lazy Leveling reduces

WA relative to Leveling while having the same memory com-

plexity, it enables superior memory/merge trade-offs
2
. The

broader principle is that the means of exploiting the cost

emanation asymmetry is to merge newer data more lazily.

Minor vs. Major Compactions.We refer to merge opera-

tions at Levels 1 to L−1 as minor compactions and to merge

operations at Level L as major compactions. In the next two

sections, we present a series of techniques to alleviate their

overheads in distinct ways. The new designs that we present

generalize and augment our previous work on Bloompti-

mized filters and Lazy Leveling with the ability to set non-

uniform and carefully-adjusted capacity ratios across dif-

ferent levels. The overarching goal is to further push the

read/write/memory scalability envelope forWPI applications

to maintain more stable performance as the data grows.

2
We show later that Leveling is still a good choice for workloads with many

range reads or for applications without enough memory for Bloom filters.



Term Definition Unit
N total data size blocks

F buffer size blocks

B block size entries

L number of levels levels

M average bits per entry across all Bloom filters bits

p sum of FPRs across all Bloom filters

Ni data size at Level i blocks

ai maximum number of runs at Level i runs

ri capacity ratio between Levels i and i−1

pi Bloom filter FPR at Level i

T base capacity ratio

C capping ratio (for largest level)

X ratio growth exponential

K Levels 1 to L−1 merge greediness

Z Levels 1 to L merge greediness

Table 1: List of terms used throughput the paper.

3 CAPPED LAZY LEVELING
To devise a more scalable merge policy, we start by taking a

closer look at Lazy Leveling. As we have seen in Section 2,

WA complexity with Lazy Leveling isO(T +L), and it can alter-

natively be expressed asO(T + logT (N/F )). Minor compactions

contribute the O(logT (N/F )) term while major compactions

contribute the O(T ) term. In order to prevent the overhead

of minor compactions from increasing as the data grows,

the only existing tuning option is to increase the capacity

ratio T to curb the value of O(logT (N/F )). The problem, how-

ever, is that this causes the cost of major compactionsO(T ) to

increase. In this way, Lazy Leveling exhibits an intrinsic con-

tention between the costs of minor and major compactions

as the costs of both are controlled by the same knob. To

address this, we introduce Capped Lazy Leveling (CLL), a

generalization of Lazy Leveling that decouples major and

minor compaction costs. It does this by allowing to control

the largest level’s capacity independently.

High-Level Design. Figure 3 illustrates the high-level de-
sign of CLL, and Table 1 lists terms that we use throughout

the paper. Similarly to Lazy Leveling, CLL performs Tiered

merging at Levels 1 to L−1 and Leveled merging at Level L.
The novelty is that CLL introduces a new design parameter

called the capping ratio C that allows varying the largest

level’s capacity ratio independently. As shown in Figure 3,

we define C as the ratio between the data size at the largest

level to the cumulative capacity across all smaller levels. On

the other hand, the termT , coined the base ratio, denotes the
capacity ratio between any pair of adjacent smaller levels.

The capping ratio C can be tuned to assume any value

from one and above. When C is set to T−1, CLL becomes

identical to Lazy Leveling. We further use Equation 1 to more

generically denote ri as the ratio between the capacities at

Level i and Level i−1. Throughout the section, we show

…

Capped Lazy Leveling (CLL)

C times 
larger

T times larger

T times larger

FPR

(0.31%

#runs

(1.25%

(5%

+

+

· 3)

· 3)

· 1)

=  10%

+

(0.08% · 3)+

Figure 3: CLL allows the largest level’s capacity ratio
to be tuned independently (T is set to 4, C is set to 1,
and p is set to 0.1 or 10% in this figure).

how to co-tune the knobs C and T to enable more scalable

read/write/memory cost trade-offs for WPI workloads.

ri =
{
T , 1 ≤ i ≤ L−1

C · T
T−1

, i = L
(1)

Level Capacities. To derive the cost properties for CLL,

we start by formalizing its structure. Equation 2 denotes

Ni as the capacity at Level i . We derive it in Appendix A

by observing that the capacity at Level i is smaller than at

Level L by a factor of the inverse product of the capacity

ratios between these levels.

Ni =

{
N · 1

C+1 · T−1
T · 1

T L−i−1
, 1 ≤ i ≤ L−1

N · C
C+1 , i = L

(2)

Number of Levels. Equation 3 gives the number of levels L,
derived in Appendix B by observing that the largest level’s ca-

pacity is larger than the buffer size by a factor of the product

of all capacity ratios.

L =
⌈
logT

(
NL

F
·
T − 1

C

)⌉
(3)

Runs at Each Level. Equation 4 denotes ai as the number of

runs that Level i gathers before a merge is triggered. Levels 1

to L−1 each have at most T−1 runs (the T th
run triggers a

minor compaction), while Level L has one run since a major

compaction is triggered whenever a new run comes in.

ai =
{
T − 1, 1 ≤ i ≤ L−1

1, i = L
(4)

Bloom Filters. Equation 5 denotes pi as the FPR that CLL

assigns to filters at Level i . These FPRs are derived in Ap-

pendix C by generalizing Bloomptimized filters for CLL such

that the largest level’s FPR is fixed as the data grows while

smaller levels are set decreasing FPRs to keep the sum of

FPRs p fixed (note that by definition p =
∑L
1
ai · pi , and that

Equation 5 is defined for p < C+1
C ).

pi =

{
p · 1

C+1 · 1

T L−i
, 1 ≤ i ≤ L−1

p · C
C+1 , i = L

(5)

Top-Down Capacity Determination. LSM-tree designs

typically set the capacity at each level to be a multiple of the



buffer size [29]. The problem with applying this approach

to CLL is that whenever a new largest level L gets created,

it would contain only a single run of the same size as the

runs that would later fill up Level L−1 as more data arrives.

Hence, CLL would effectively degenerate into a Tiered LSM-

tree whenever a new largest level is created (and thus violate

the performance properties that we establish later in this

section). In order to maintain an invariant that the data size

at Level L always exceeds the cumulative data size across

all smaller levels by a factor of at least C , CLL sets level ca-

pacities top-down based on the data size at Level L. It does
this by adjusting the widths of Levels 1 to L−1 after every
major compaction to ensure that their cumulative capacity

is smaller by a factor of C than the size of the new run at

Level L. We describe this process in detail in Appendix E.

Memory. We now continue to derive the cost properties

for CLL. We derive the memory footprint by summing up

the standard memory equation for a Bloom filter’s memory

across all levels (i.e.,

∑L
i=1 (B ·Ni ·ln(1/pi ))/ln(2)2). We simplify this

expression into closed-form in Appendix D and express it

in terms of the average number of bits per entryM needed

across all filters in Equation 6. In Equation 7, we express the

cost complexity ofM to highlight how the different param-

eters impact it. The core new finding is that as we increase
the capping ratio C , the memory requirement decreases. The
intuition is that increasing the capping ratio brings a higher

proportion of the data to the largest level, which has the

highest FPR and thus requires the fewest bits per entry.

M =
1

ln(2)2
· ln

(
1

p
·
C + 1

C
C
C+1

· T
T

(C+1)·(T−1)

)
(6)

M ∈ O

(
ln

T
1

C

p

)
(7)

Write Amplification. An entry on average participates in

one minor compaction at each of Levels 1 to L−1, and inO(C)

major compactions at Level L. WA with CLL is therefore

O(C+L), which can also be expressed as O(C+ logT (N/P)).

Squared CLL. Based on CLL’s cost properties, we now show

how to co-tune the capping ratioC and the base ratioT to en-

able the best possible trade-offs. We introduce Squared CLL

(SCLL), a variant of CLL that sets the capping ratio C to be

equal to the number of levels L3. We call it squared because

it causes the cost of major and minor compactions to em-

anate equally from the largest level, i.e., the width, and from

the smaller levels, i.e., the height. WA complexity therefore

simplifies to O(logT (N/F )), while the memory requirementM

becomes O(ln(T
1/L

p )) and thus decreases as the data grows.

3
Since the number of levels L is defined in terms of C in Eq. 3, setting C to

L creates a circular dependency. We avoid this dependency by setting C to

logT (N/P ), as this function approximates the number of levels well enough.

The intuition is that as the data grows, SCLL increases the

fraction of data at the largest level, which has the highest

FPR and thus requires the fewest bits per entry.

Asymptotic Win.We summarize the properties of SCLL as

well as for CLL in Figure 8, which holds the cost of point reads

fixed while detailing the cost complexities for the rest of the

cost metrics in terms of the base ratioT , the capping ratioC ,
and the sum of FPRs p. Figure 8 also includes range read cost,
derived by analyzing the maximum number of runs

∑L
1
ai .

We observe that relative to Tiering, the memory complexity

for SCLL is better while all other cost complexities are the

same. In this way, SCLL achieves a net asymptotic win.

Better Trade-Offs. While SCLL improves memory relative

to Tiering, the gain can be traded for either point read cost

or write cost. Trading for point read cost requires keepingM
fixed as the data grows. This causes the sum of FPRs p to

decrease at a rate of O(T 1/L · e−M )
(derived by rearranging

Equation 7 in terms of p). On the other hand, trading for

write cost while keeping point reads and memory fixed re-

quires increasingT at a rate of O(e
√
ln(N/F )) as the data grows

(derived by rearranging Equation 7 in terms of T , substitut-
ing L for C , and simplifying). We plug this function for T
into SCLL’s WA complexity, which becomes O(

√
ln(N/F )), a

slower asymptotic growth rate with respect to the data size

than with a traditional LSM-tree. In this way, SCLL enables

more scalable trade-offs all around.

New Pareto Frontier. Figure 4 Part (A) visualizes the mem-

ory/merge trade-offs that CLL enables relative to existing

designs (all the designs from Figure 1 for 32PB for included

as well as Monkey/Leveling). Each of the four green curves

for CLL fixes C to a different value (i.e., 1, 2, 4 and L for

SCLL) while varyingT to enumerate different trade-offs. We

give the precise cost models used to generate this figure in

Section 5. The figure demonstrates that SCLL delineates the

best memory/merge trade-offs across all instances of CLL. It

further demonstrates that SCLL complements the cost curve

for Lazy Leveling (i.e., it connects to it at the point where

T=L). In this way, Lazy Leveling and SCLL delineate a new

and improved Pareto frontier while rendering the Tiered

merge policy suboptimal for WPI workloads.

Figure 4 Part (B) illustrates the scalability of the new Pareto

frontier (we omit the points for Lazy Leveling that are not

along the Pareto frontier for clarity). Subsequent curves of

the same color and line style in the figure correspond to the

trade-offs enabled by a given design for different data sizes

(32GB, 32TB and 32PB). As the data grows, the new Pareto

frontier moves outwards more slowly and thus enables more

stable cost properties.

Analyzing Range Reads. Figure 4 (C) illustrate the trade-
offs between range reads and write-amplification that SCLL

enables. The log-scale y-axis measures range read cost as the
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Figure 4: CLL provides better and more scalable trade-offs for WPI workloads at the expense of range reads.

maximum number of runs that a range read has to access.

SCLL exhibits worse range/write trade-offs thanwith Tiering.

The reason is that while major compactions with SCLL are

crucial for bounding the costs of memory and point reads,

they double WA relative to Tiering without significantly

helping to curb the number of runs that a range read has to

access. Hence, SCLL is best suited for WPI workloads. We

return to this point in Section 5.

4 THE LOG-STRUCTURED MERGE-BUSH
While SCLL enables new and more scalable trade-offs be-

tween WA, memory and point reads, is it possible to do

even better? To gain insight, Figure 5 illustrates a cumulative

breakdown of how the different cost metrics emanate from

different levels with SCLL
4
. The vertical distance between

two adjacent points i and i−1 on a given curve represents

the percentage contribution of the ith level to the total cost

of the corresponding metric. We observe that while minor

compaction overheads emanate equally from Levels 1 to L−1,
smaller levels contribute negligibly to point read cost and

memory. In this way, the cost emanation asymmetry dis-

cussed in Section 2 still lingers with SCLL for Levels 1 to

L−1. The core insight is that while minor compaction over-
heads increase logarithmically with the data size, they lead
to exponentially diminishing returns with respect to memory
and point reads. To address this cost asymmetry, we now

introduce LSM-bush, a generalization of CLL that curbs the

overhead of minor compactions as the data grows by setting

increasing capacity ratios between smaller levels.

High-Level Design. Figure 6 illustrates the high-level de-
sign. Similarly to CLL, LSM-bush performs Tiered merging

at Levels 1 to L − 1 and Leveled merging at Level L. It also
uses top-down capacity determination, and it allows tuning

the capping ratioC independently to be able to restrict major

compaction costs. The core innovation is that LSM-bush in-

troduces a new parameter called the growth exponential X to

allow growing the capacity ratios between pairs of adjacent

smaller levels. As formalized in Equation 8, for all Levels 1

4
While the figure is drawn for an instance with T = 12 and L = 10, the

shapes of the curves look similar for any instance of SCLL.

to L−1, the capacity ratio ri at Level i is greater by a power

of X than the capacity ratio at Level i+1. As a result, the

capacity at smaller levels decreases at a doubly-exponential

rate. When X is set close to 1, LSM-bush becomes identical

to CLL. As we increaseX , smaller levels become increasingly

lazier by gathering more runs before merging them.

ri =

{
TXL−i−1

, 1 ≤ i ≤ L−1

C · T
T−1

, i = L
(8)

Level Capacities.To derive the cost properties of LSM-bush,

we first formalize its structure. Equation 9 denotes Ni as the

capacity at Level i , derived in Appendix A by observing that

it is smaller than Level L by a factor of the inverse product

of the capacity ratios between these levels.

Ni =


N
C+1 ·

(
T
ri

) 1

X−1
·
ri −1
ri

, 1 ≤ i ≤ L−1

N · C
C+1 , i = L

(9)

Number of Levels.We derive the number of levels in Ap-

pendix B by observing that the largest level is larger than

the buffer by a factor of the product of all capacity ratios.

L =
⌈
1 + logX ((X − 1) · logT (

N
F

·
1

C + 1
·
T − 1

T
) + 1)

⌉
(10)

Runs at Each Level. Equation 11 denotes ai as the maxi-

mum number of runs at Level i . For Levels 1 to L−1, Level i
gathers at most ri−1 runs from Level i − 1 before reaching

capacity (the r thi run triggers a minor compaction). On the

other hand, Level L has one run since a major compaction is

triggered whenever a new run comes in.

ai =
{
ri − 1, 1 ≤ i ≤ L−1

1, i = L
(11)

Bloom Filters. Equation 5 denotes pi as the FPR assigned

to filters at Level i . Derived in Appendix C, this equation

Bloomptimizes the filters such that the largest level’s filter

has a fixed FPR while smaller levels are assigned decreasing

FPRs as the data grows to keep the sum of FPRs p fixed.

Equation 12 is defined for p < C+1
C · aL .
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pi =


p
ai

· 1

C+1 ·
ri −1
ri

·

(
T
ri

) 1

X−1
, 1 ≤ i ≤ L−1

p
aL

· C
C+1 , i = L

(12)

Assuming CLL.While Equations 9, 10 and 12 are undefined

when the growth exponential X is set to exactly one (e.g.,

due to division by zero), we note that as X approaches one

and becomes arbitrarily close to it, these equations approach

and converge to Equations 2, 3, and 5 respectively from the

previous section on CLL. The same applies to all equations

in this section. In this way, LSM-bush is a superset of CLL.

Quadratic LSM-bush.We now continue to analyze the cost

properties of LSM-bush. Since LSM-bush is extremely ver-

satile structurally, we highlight a particular instance called

Quadratic LSM-bush (QLSM-bush), which fixes the growth

exponential X to 2. Thus, for Levels 1 to L− 1, the number of

runs at Level i is the square of the number of runs at Level

i+1. We use QLSM-bush to enable a comparison of cost com-

plexities against other designs. We also study the trade-offs

provided by other values of the growth exponential.

Memory. The memory footprint is derived by summing up

the equation for a Bloom filter’s memory across all levels

(i.e.,

∑L
i=1 (B ·Ni ·ln(1/pi ))/ln(2)2). While this expression is harder

to simplify for LSM-bush into closed-form than it is for CLL

(we discuss why in Appendix D), we can derive its com-

plexity. We recall that the capacity at smaller levels, the

term B · Ni , decreases at a doubly-exponential rate. On the

other hand, the number of bits per entry for smaller lev-

els, the term ln(1/pi )/ln(2)2, increases at an exponential rate.

Thus, while smaller levels require exponentially more bits

per entry, they have doubly-exponentially fewer entries. As

a result, larger levels dominate the overall memory footprint

(particularly the largest three levels
5
). We summarize their

memory complexity as O(ln(T
1/C

p ) +X ) bits per entry to high-

light the impact of all four parameters on memory. As this

5
The memory (in bits) needed for the largest three levels with respect to

Equations 12 and 9 isO (N · ln( 1p )),O (NC · ln(C ·T
p )) andO ( N

C ·T · ln(C ·TX
p ))

while the smaller levels’ footprints get dominated by these terms. We sum

up these terms to an overall complexity of O (ln(T
1/C
p ) + X ) bits per entry.

…

LSM-Bush

C
tim

es larger
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TX times larger

…

…
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(0.00031% 255)+ ·

·

·

·

Figure 6: LSM-bush sets increasing capacity ratios be-
tween smaller levels (T is set to 4, C is set to 1, p is set
to 0.1 or 10%, and X is set to 2 in this figure).

expression is independent of the data size, the number of bits
per entry for LSM-bush needed to guarantee a given point read
cost does not increase as the data grows.
Write-Amplification. On average, an entry participates in

one minor compaction at each of Levels 1 to L−1 and in O(C)

major compactions at Level L. WA is therefore O(C+L). For

QLSM-bush, this can be expressed as O(C + log
2
logT N/F ).

Range Reads.We derive range read cost by analyzing the

number of runs across all levels. When the growth exponen-

tial X is close to 1, LSM-bush becomes identical to CLL. In

this case, the number of runs is O(1 +T · (L−1)), i.e., 1 run at

Level L and O(T ) runs at each of Levels 1 to L−1. For higher
values ofX , the number of runs a1 at Level 1 quickly comes to

dominate the overall number of runs in the system as it con-

tains doubly-exponentially more runs than at larger levels.

Thus, a range read generally has to accessO(1+T · (L−1)+a1)

runs. The complexity for a1 can be analyzed using Equation 8

as O(TX L−2
). By subbing in L from Equation 10, we can sim-

plify to O(( N
F ·C )

X−1
X ·T

1

X ). For QLSM-bush where X is set to 2,

this further simplifies to O(
√
(N ·T )/(F ·C)).

Bloom Filter CPU Overheads. As LSM-bush can contain

a large number of runs at its smaller levels on account of

merging more lazily, having to perform a Bloom filter check

for each of these runs during a point read can become a CPU

bottleneck. To prevent this bottleneck, LSM-bush replaces

the Bloom filters at smaller levels (typically at Levels 1 to

L−3) by a hash table that maps from each entry to its physical

location in storage. As a result, LSM-bush performs one hash

table check rather than numerous Bloom filter checks for

smaller levels. As a hash table requires more bits per entry

than a Bloom filter does, in Appendix F we show (1) how

to pick which levels to use a hash table for such that most

filter checks are eliminated while the memory footprint stays

modest, and (2) how to index probabilistic key signatures

rather than actual keys in each hash table to restrict its size

while at the same time ensuring that the expected number

of false positives per point read stays fixed.

Comparison to SCLL. We summarize the properties of

QLSM-bush against SCLL in Figure 8. As we have seen,
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Figure 7: LSM-bush is more scalable than SCLL for WPI workloads at a further expense to range reads.

SCLL exhibits a decreasing memory footprint with respect

to the data size (i.e., by pegging the capping ratio to the

number of levels
6
). Furthermore, SCLL is able to trade the

gain in memory to reduce WA down to O(
√
ln(N/F )) while

holding point reads and memory fixed as the data grows.

QLSM-bush, on the other hand, offers a superior write cost

of O(C + log
2
logT N/F )) while holding point reads and mem-

ory fixed as the data grows. For WPI workloads, this is a net

improvement over SCLL. As we show next, QLSM-bush can

trade the gain in WA for either memory or point reads by

co-tuning its knobs.

QLSM-Bush Pareto Frontier. In Figure 7 Part (A), the solid
green curve represents the best memory/merge trade-offs

that QLSM-bush enables by co-tuning the base ratio T and

the capping ratioC . The black dot indicates the point whereT
is set to 2 and C is set to 1. To the right of each dot, we in-

crease T while setting C to T − 1. While this increases the

overhead of major compactions and thus WA, it increases

the proportion of data at the largest level and thus reduces

memory. To the left of the dot, we increase T while fixing

C to 1. While this decreases the overhead of minor com-

pactions and thus WA, it increases the memory requirement

as there are more runs in the system. In this way, QLSM-bush

can be tuned to assume different memory/merge trade-offs

along a new Pareto frontier that dominates SCLL. In Fig-

ure 7 Part (B), we show that this curve moves outwards

more slowly than SCLL’s curve as minor compaction over-

heads increase more slowly with QLSM-bush. In this way,

QLSM-bush offers increasingly dominating memory/merge

trade-offs than existing designs as the data grows. As any

gain in memory can be traded for point read cost by holding

memory fixed, QLSM-bush allows to trade among all three

metrics along a superior three-dimensional Pareto frontier,

of which we only illustrate two dimensions in the figure. We

return to this point with experiments in Section 6.

6
We experimented with pegging the capping ratio C to the number of

levels L with QLSM-bush as well and observed that in practice this leads to

worse trade-offs (e.g., compared with fixing C to 1) as the gain in memory

is slow and does not offset the increase in major compaction overheads.

Farther Pareto Frontier. Figure 7 Part (A) illustrates two
more instances of LSM-bush with different tunings of the

growth exponentialX (1.5 and 3). We observe that each value

of the growth exponential defines a distinct Pareto frontier.

Higher values lead to superior frontiers, though each sub-

sequent frontier incurs diminishing returns as minor com-

paction overheads decrease more slowly as X increases. The

trade-off is that with higher values of X , range reads be-

come more expensive as there are more runs in the system.

We illustrate this in Figure 4 Part (C), which compares the

range/write trade-offs that these instances of LSM-bush en-

able. In this way, LSM-bush allows optimizing more for WPI

workloads by using higher values of X or optimizing more

for workloads with range reads using lower values of X .

5 THEWACKY CONTINUUM
As we have seen throughout the paper, different designs

enable a wide range of trade-offs between the costs of writes,

point reads, range reads, and memory. For example, while

LSM-bush enables the best point/write/memory trade-offs,

the Leveled and Tiered LSM-tree designs delineate the best

range/write trade-offs (shown in Figure 7). Overall, no single

point in the design space performs as well as possible across

all workloads. This begs the question of how to pick the best

design and tuning for a particular application workload?

To answer this question, we introduceWacky, a generaliza-

tion that can assume any of the Bloomptimized designs dis-

cussed in this paper within a single implementation. Wacky

is a design continuum [31] with a small and finite set of knobs

that can be tweaked to transition across designs. It further

includes cost models that predict how changing each knob

would impact overall system behavior. As a result, Wacky’s

design space can be searched analytically and navigated in

small, judicious, and informed steps to converge to the in-

stance that performs best in practice.

Controlling Merging Within Levels. Wacky inherits the

LSM-bush design space as a starting point and augments it

with the ability to assume Bloomptimized Tiered and Leveled

LSM-tree designs. The goal is to also be able to optimize for

range reads. To this end, Wacky adds the ability to control



Figure 8: A list of Wacky’s parameters and how to tune them to assume both existing and new designs including
CLL, SCLL and QLSM-bush, which provide increasingly more scalable WPI performance.

the greediness of merge operations within levels (similarly

to Dostoevsky [23]). Each level consists of one active run
and zero or more static runs. Incoming data into a level gets

merged into the active run. Once this run reaches a con-

figurable fraction of the level’s capacity, called the merge
threshold, it becomes static and a new active run is initial-

ized. When the merge threshold is set to 1, we have Leveled

merging. When it is set to 1/(ri−1), we have Tiered merging.

Wacky allows to fine-tune the merge threshold across dif-

ferent levels by introducing two new parameters: K controls

the merge threshold at Levels 1 to L−1 while Z controls

the merge threshold at Level L. Equation 13 denotes ai as
the maximum number of runs that each level can have in

terms of these parameters. Generally, the merge threshold

for Level i is ai/(ri−1), where ai comes from Equation 13. In

this way, when K and Z are both set to zero, we have Lev-

eled merging at all levels. When they are both set to one,

we have Tiered merging across all levels. Wacky allows to

transition between Leveling and Tiering at different levels

in small steps by tweaking these knobs.

ai =
{
(ri − 1)K , 1 ≤ i ≤ L−1

CZ , i = L
(13)

Structural Universality.Wacky inherits the parameters X ,

T and C from LSM-bush to set capacity ratios across levels.

As a result, it is able to use Equations 9 and 10 from Section 4

out-of-the-box to determine the overall number of levels

as well as individual level capacities with respect to these

parameters. To set assign Bloomptimized FPRs to its filters,

Wacky uses Equation 12 from Section 4 while plugging in

the number of runs at each level from Equation 13. In this

way, Wacky has a total of five parameters, K , Z , X , T and C ,
which fully dictate the overall structure. At the top part of

Figure 8, we show how to set each of these parameters to

assume any of the designs discussed so far.

Searchable Cost Model. We now continue to derive a gen-

eralized cost model for Wacky with the goal of being able to

search its design space for the best design for a given applica-

tion. While it proves difficult to derive a precise closed-form

model for each of the metrics with respect to such a versatile

design space, we instead derive models that are fast to com-

pute in terms of the structural properties of Wacky, which

Wacky inherits in closed-form as Equations 9, 10, 12 and 13.

Write Cost. We derive the amortized I/O cost of an appli-

cation write by dividing write-amplification by the block

size B as each write I/O during a merge operation handles B
entries. To model WA across the different levels, we observe

that each entry gets copied an average of
C
aL

times at Level L

and an average of
ri−1
ai+1

times at Level i . This model assumes

preemptive merging, whereby we include all runs at Levels

1 to i in a merge operation if these levels are all just below

capacity [23]. As a result, a proportion of 1/ri of each levels’

capacity skips Level i and thus discounts write cost.

W =
1

B
·

(
C
aL
+

L−1∑
i=1

ri − 1

ai + 1

)
(14)

Point Reads. Equation 15 denotes Rzero as the I/O cost of

a point read to a non-existing entry and R as the cost of a

worst-case point read (to an entry at the largest level). Rzero
incurs an average of

∑L
i=1 pi · ai false positives, and so its

average I/O cost is equal to p, the sum of all FPRs. On the

other hand, R entails (1) one I/O to fetch the target entry

from Level L, (2) an average of p −pL ·aL false positives while

searching Levels 1 to L−1, and (3) an average of
pL ·aL

2
false

positives while searching Level L (this assumes the target

entry is on average in the middle run at Level L). We sum up

these three terms to obtain the expression for R in Equation

15, which predicts the I/O cost of point reads given the Bloom

filters’ assignment.

Rzero = p

R = 1 + (p − pL ·
(aL + 1)

2

)
(15)



Range Reads. We model the I/O cost of range reads V as

the total number of runs in the system: V =
∑L
1
ai .

Finding the Best Design. To search Wacky for the best

design, we model the average worst-case operation cost Θ
in Equation 16 based on the proportion of different types of

operations in the workload. In particular, we denote r , z,w
andv as the proportion of point reads, zero-result point reads,

writes, and range reads, respectively, and we multiply each

of them by the corresponding I/O cost from the equations

derived above. Equation 16 allows iterating over different

configurations in search of the design that minimizes the

average operation cost.

Θ = r · R + z · Rzero +w ·W + v · V (16)

Tractable Search.As searching all combinations ofWacky’s

parameters can be computationally intensive, we propose

a practical approach is to fix some of the parameters as in

Figure 8 so as to search projections of the space. For each

projection, we iterate over the base ratio T to enumerate its

different trade-offs. Since the cost properties for the different

metrics become increasingly extreme as we increase T , the
design that strikes the best balance usually occurs for values

of T with fewer than three digits. We therefore use an iter-

ative approach that continues to increment T until finding

a local minimum for the average operation cost Θ. We then

pick the design from across all projections that minimizes

the average operation cost Θ. This approach allows finding a

good design that approximates the optimal choice for a given

workload in a fraction of a second. Future directions include

(1) extending the cost models to take workload idiosyncrasies

into account (e.g., skew), (2) weighting the different costs

based on hardware characteristics (e.g., sequential vs. ran-

dom access), and (3) adapting during runtime as workloads

change to identify the best design [30].

6 EVALUATION
We now evaluate Wacky against existing designs, and we

highlight how it uses SCLL and LSM-bush to enable better

and more scalable cost trade-offs.

Implementation.We implemented Wacky on top of Rocks-

DB [28], an extensible open-source KV-store. At its core,

RocksDB is a Leveled LSM-tree, though it also supports an

API that enables a client application to select and merge

runs using customizable user-programmed logic. We used

this API to implement Wacky by triggering merging across
and within levels based on Equations 8 and 13, respectively.

By default, RocksDB maintains an in-memory Bloom filter

for every run, and it sets the same FPR to runs at all levels.

We extended RocksDB to allow setting FPRs to different

levels based on Equation 12. Baselines.We compare Wacky

against seven baselines to represent different parts of the

design space. In particular, we use plain Leveled and Tiered

LSM-trees with uniform FPRs to reflect designs in industry,

as well as Leveled, Tiered and Lazy Leveled designs with

Bloomptimized filters to reflect the toughest competition

from research. We tune all these designs with a capacity

ratio of 10 (i.e., the default capacity ratio in RocksDB).

How to EvaluateWacky. AsWacky can assume numerous

forms with different cost properties, we search the Wacky

design space prior to each experiment for the best design

given the application setting (i.e., the workload, data size,

and memory budget). We do so using the analytical method

outlined in Section 5 to iterate over different values of the

base ratio T for each of the five projections of Wacky from

Figure 8 and picking the design that minimizes the average

operation cost. We also evaluate SCLL (T = 30) and QLSM-

bush (T = 2, C = 1) to focus in more detail on the new parts

of the design space introduced in this paper.

DefaultWorkload and Setup. Each experimental trial com-

mences by default from a fresh clone of a 256GB data set

consisting of 128B entries. To focus on worst-case perfor-

mance, we measure throughput across workloads consisting

of uniformly randomly distributed insertions and reads. Since

the cost of an application write is incurred indirectly after

the buffer flushes, we measure write cost by running mul-

tiple writes across long time windows and measuring the

number of writes the system was able to process. We ensure

that the time windows are long enough in each experiment

to account for the full amortized write cost (e.g., by waiting

for at least one major compaction to take place). We assign a

default budget of 5 bits per entry to the Bloom filters of each

baseline. In this way, we allow memory-optimized designs

to manifest their improvement in terms of superior point

read performance.

Experimental Infrastructure. We use a machine with a

2TB SSD connected through a PCI express bus, 32GB DDR4

main memory, four 2.7 GHz cores with 8MB L3 caches, run-

ning 64-bit Ubuntu 16.04 LTS on an ext4 partition. For all

baselines, we used half of the threads for merging and the

other half to each issue reads and writes.

Point Reads vs. Writes. In Figure 9 Parts (A) and (B), we

use a workload consisting of point reads and insertions, and

we increase the proportion of point reads on the x-axis from

0% to 100%. Part (A) uses only zero-result point reads, while

Part (B) uses only worst-case point reads where the target en-

try is at the largest level. On the y-axis, we measure through-

out by normalizing it for all baselines with respect to Wacky

to enable a clear comparison. We report the actual through-

put that Wacky achieves for each workload above the top

x-axis (thousands of read/write operations per second).

First, we observe that the plain Leveled and Tiered designs

perform sub-optimally across the board because they do
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Figure 9: Wacky chooses the design that maximizes throughput for every workload, and it leverages SCLL and
QLSM-bush to enable superior performance for WPI workloads.

not allocate their memory in a manner that minimizes the

sum of FPRs. Point reads therefore incur significantly more

false positives and thus I/O than with the other designs.

Monkey/Tiered and Monkey/Leveled also do not exhibit the

best possible performance for any of the workloads. The

reason is that the Tiered Monkey variant incurs many false

positives at the largest level as it contains many runs, while

the Leveled Monkey variant suffers from high compaction

overheads across all levels. When the workload is write-

dominated, the best design is LSM-bush as it optimizes the

most for writes. As the proportion of reads increases, the

best design becomes SCLL and then Lazy Leveling, each of

which optimizes more for reads by merging more greedily.

On top of the figure, we report the design that Wacky

picks for each workload point as well as the chosen base

ratio T , which fine-tunes each design. While no fixed design

is best for every workload, Wacky’s ability to search for the

best design allows it to either match or outperform each of

the fixed designs across the board.

Range Reads vs. Writes. Figure 9 Part (C) uses a mixed

workload with 60% writes and 40% reads and where the x-

axis varies the proportion between point reads and range

reads (the range reads are all short accessing ≈ 1 block per

run, while the point reads are 50% zero-result and 50% tar-

geting an entry at the largest level). Similarly to the previous

experiments, no single design performs well across all work-

load combinations. As we increase the proportion of range

reads, it pays off to merge more greedily to restrict the num-

ber of runs that need to be accessed. The optimal choice

therefore switches from QLSM-bush to SCLL, then to Lazy

Leveling, and finally to Leveling. Wacky dominates all fixed

designs across the board by being able to assume the best

design for each workload point.

Data Size Scalability. Figure 10 Part (A) shows how the dif-

ferent designs scale as the data size grows. We fix the work-

load to 60% insertions and 40% point reads. Half of the point

reads are zero-result and half target entries at the largest

level. The key take-away is that the optimal data structure

choice changes with respect to the data size. Wacky first

uses SCLL, but as the data size grows the merge overheads

of SCLL grow too. Therefore, Wacky switches from SCLL

to QLSM-bush to allow itself to scale better as the data size

continues to grow. In this way, Wacky scales better than

existing systems by (1) having fundamentally more scalable

designs to chose from, and (2) knowing how to choose and

adopt the best design for the workload.

Memory Scalability. Figure 10 Part (B) uses the same work-

load from Part (A) while varying the memory budget for the

Bloom filters on the x-axis from 0 to 20 bits per entry. With 0

bits per entry, Wacky uses Leveling as in this case each read

accesses every run. The merge greediness of Leveling there-

fore pays off. As the memory increases, however, Wacky

switches to using SCLL and then to increasingly more write-

optimized variants of QLSM-bush. A crucial observation is

that for most of the designs, performance eventually flat-

tens out as the number of false positives becomes negligible.

On the other hand, Wacky is able to continue improving

throughout with respect to memory. The reason is that as

memory increases, Wacky picks more write-optimized de-

signs as the increasingly powerful Bloom filters make up for

having more runs in the system. In this way, Wacky scales

better with respect to memory.

The figure includes a dashed curve labeled SK correspond-

ing to SkimpyStash [25], which represents log-structured

hash-table (LSH-table) designs. SkimpyStash (1) logs entries

in storage, (2) maps them using a hash table in memory,

and (3) chains entries in storage belonging to the same hash
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Figure 10:Wacky scales betterwith respect to data size (A) andmemory (B), and as its design space ismore versatile
it contains better design choices, especially for write-heavy workloads (C).

bucket as a linked list. As memory increases, more hash

buckets fit in memory and so the average linked list length

decreases. Point reads therefore cost fewer I/Os. Neverthe-

less, SkimpyStash requires ≈ 40 bits per entry to reduce the

average linked list length to one. With 20 or fewer bits per

entry as with this experiment, each point read for SK entails

multiple I/Os and thus compromises throughput. The general

observation is therefore that Wacky dominates LSH-table

designs such as SK when memory is scarce.

Systems Comparison. In Figure 10 Part (B), we compare

Wacky to Monkey and Dostoevsky as we vary the proportion

between writes and point reads in the workload (half of the

point reads are zero-result while the other half target the

largest level). Monkey includes Bloomptimized Tiered and

Leveled designs, while Dostoevsky is a superset of Monkey

that also includes Lazy Leveling. We search each of their de-

sign spaces and fine-tune the base ratio prior to every exper-

imental trial as we do for Wacky, and we use the analytically

chosen instance for the experiment. The figure also includes

plain Leveling to represent the default behavior of RocksDB,

as well as a more general curve labeled Optimal Industry,

which picks the best plain Tiered or Leveled design (with

uniform FPRs across all levels) and fine-tunes the base ratio.

This experiment demonstrates by how much the inclusion of

SCLL and QLSM-bush in the design space of Wacky allows

it to push performance relative to the best design that each

of the other design spaces includes. Dostoevsky provides the

toughest competition. We observe that Wacky significantly

outperforms Dostoevsky for write-intensive workloads as it

is able to use SCLL and QLSM-bush to optimize far more for

writes than any design within Dostoevsky.

Summary. Overall, the experiments show that while each

fixed design may be best for one particular application set-

ting, no fixed design performs well universally for all work-

loads, data sizes, or memory budgets. In this way, we demon-

strate the potential of Wacky as a versatile and searchable

design continuum that can identify and use the best design

instance for the target application. We further demonstrate

that SCLL and QLSM-bush allow Wacky to outperform and

scale better than existing designs for WPI workloads with

respect to both memory and data size.

7 RELATEDWORK
Over the past decade, a growing body of work has emerged

with the goal of optimizing LSM-tree based KV-stores for

the increasing write rates of applications. In this section, we

position LSM-bush along this arch.

LSM-Tree.Withwrite-intensiveworkloads, LSM-tree’smerge

operations become a performance bottleneck, and so a lot

of complementary work from the past ten years focuses

on mitigating merge overheads. A widespread approach is

to partition individual runs into multiple independent files

and to only merge files with a small key range overlap with

files in the next level [11, 55, 57]. Other approaches store

the value components of all entries outside of LSM-tree to

avoid repeatedly merging them [17, 42]. Accordion packs

entries more densely into the buffer to reduce the frequency

with which the buffer flushes and triggers merging [13], and

TRIAD proposes to keep frequently updated entries in the

buffer to avoid their continual inclusion in merging [11].

One recent design opportunistically merges parts of runs

that have recently been scanned and are already in memory

[47]. Several recent approaches use Tiered merging while

controlling the data’s layout within a level [48] or using

cached Bloom filters [60] or Cuckoo filters [51] to keep the



access cost of point reads low. In this work, we show that

some many operations in existing LSM-tree designs are fun-

damentally unimpactful and that we can remove them by

applying increasing capacity ratios across smaller levels to

scale write cost better than with existing LSM-tree designs.

LSH-Table. The Log-structured hash table (LSH-Table) logs

entries in storage and maps their locations in memory using

a hash table. In this way, it exhibits optimum write perfor-

mance at the expense of having a high memory footprint

for the hash table. Design variants such as BitCask store

all keys in memory [54], though most modern designs use

a smaller key-signature (e.g., 1-2 bytes per entry) to repre-

sent each entry in the hash table [2, 3, 18, 24]. To be able to

function with little memory, some variants allow having k
fewer hash buckets than data entries, and so data entries

within the log that map to the same bucket are chained as a

linked list in storage [18, 25]. As a result, every point read is

more expensive as traversing a linked list costsO(k) I/Os. In
this way, LSH-table designs generally require ample mem-

ory to perform well while the designs we focus on in this

work perform better when memory is scarce. In our work on

design continuums [32], we show a path towards unifying

the design spaces of LSM-tree and LSH-table to be able to

perform as well as possible under any memory constraints.

Furthermore, our design decision in Section 4 to use hash

tables for smaller levels of LSM-bush is inspired by LSH-table

designs. Smaller levels of LSM-bush can in fact be viewed as

a series of LSH-tables that evolve as a bush.

LSM-Tree designswith fractional cascading embed fence

pointers within the runs in storage to as opposed to storing

them in memory [12, 39]. Read cost is generally O(logT (N/F ))

I/O and write cost is O(TB · logT (N/F )) I/O, where T is the ca-

pacity ratio between levels. Such designs exhibit the same

asymptotic properties as Buffer-tree. Our focus in this work

is rather on data structures that use more memory to obtain

cheaper point reads in O(1).

B-Tree. BerkeleyDB uses B-tree to persist data in storage

[45]. B-tree generally performs reads andwrites inO(logB (N ))

I/O if only the root node is in memory or in O(1) I/O if all

internal nodes are in memory. While B-tree is a part of the

read/write/memory trade-off spectrum considered in this

paper, our focus here is on the more write-optimized part of

the spectrum to facilitate write-intensive applications.

Buffer-tree is a write-optimized B-tree variant for which

each internal node contains a write buffer that gets spilled

onto its children when it fills up [7, 14, 16]. With α being

the number of children each node has and the rest of the

space being used as buffer, Buffer-tree performs writes in

O(αB · logα (N )) I/O while read cost is O(logα (N )) I/O. While it

is also a part of the read/write/memory trade-off spectrum

that we consider, our focus in this work is on how to best

leverage memory to achieve point reads in O(1) I/O.

Unbounded 2-Level Designs. Some KV-store designs log

a fixed number of data batches and then merge them into a

single larger run [9, 40]. With such designs, the cost of merg-

ing into the larger run grows linearly with respect to data

size. In contrast, LSM-bush fixes the capacity ratio between

the largest and second largest levels to prevent write cost

from growing linearly in this way.

Further KV-Store Paradigms. We examine other related

KV-store designs and data models in Appendix H.

8 CONCLUSION
We show that existing key-value stores backed by an LSM-

tree exhibit deteriorating performance/memory trade-offs

as the data grows. The reason is that compaction overheads

at smaller levels grow without significantly benefiting point

reads or memory. We introduce LSM-bush, a new data struc-

ture that eliminates non-impactful compactions by setting

increasing capacity ratios between smaller levels so that

newer data is merged more lazily. In this way, LSM-bush

improves the scalability of writes, and it can trade this gain

for either point reads or memory to enable more scalable

trade-offs all around. We embed LSM-bush within Wacky, a

design continuum that generalizes all state-of-the-art merge

policies within a single searchable implementation. Wacky

can be utilized and navigated by any storage application,

from key-value stores and beyond, to find the best and most

scalable design for any workload.
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A LEVEL CAPACITIES
In this appendix, we derive Equation 9 from Section 4, which

gives the maximum stable data size that each level can hold

(i.e., before filling up and getting flushed to the next level).

Level L. By definition, the data size NL at Level L is larger

by a factor of C than the cumulative data size at Levels 1 to

L − 1. It follows that NL comprises a fraction of
C

C+1 of the

overall data size (i.e., NL = N · C
C+1 ).

Levels 1 to L-1. For Levels 1 toL−1, every r thi run that arrives

at Level i causes it to fill up and get flushed. Therefore, a

fraction of at most
ri−1
ri

of Level i can be full before it gets

flushed. We derive the ratio by which the maximum stable

data size at Level i is greater than at Level i−1 by multiplying

the maximum stable data size at Level i by ri
ri−1

to obtain the

full capacity at Level i , dividing by ri to get the full capacity

at Level i − 1, and multiplying by
ri−1−1
ri−1

to get the maximum

stable capacity at Level i − 1. Hence, the maximum stable

data size at Level i is greater by a factor of
ri

ri−1
· 1

ri
·
ri−1−1
ri−1

,

or more simply
1

ri−1
·
ri−1−1
ri−1

, than the maximum stable data

size at Level i − 1. We frame this in Equation 17 with respect

to the capacity at Level L and simplify to obtain Ni , which

denotes the maximum stable capacity at Level i .

Ni =
NL
rL

·

L−1∏
j=i+1

1

rj − 1

·
rj−1 − 1

rj−1
framing

=
NL
C

·
ri − 1

ri
·

L−1∏
j=i+1

T −XL−i−1
use Eq. 8 for ri & simplify product

=
NL
C

·
ri − 1

ri
· T −X

L−i−1−1
X−1 apply geometric sum for ratios’ exponents

=
NL
C

·
ri − 1

ri
·

(
T
ri

) 1

X−1
simplify (17)

By expressing this result in terms of the data size N , we

obtain Equation 9 in Section 4 for LSM-bush, which also

applies more generally to Wacky as explained in Section 5.

By further setting the growth exponential X to approach its

limit value of 1, we obtain Equation 2 for CLL in Section 3.

B NUMBER OF LEVELS
We derive the number of levels by observing that the largest

level’s capacity is larger than the buffer by a factor of the

product of all capacity ratios. We simplify and solve for L.

NL = F ·

L∏
i=1

ri framing

NL = F ·C ·
T

T − 1

·

L−1∏
i=1

TX
L−i−1

use Eq. 8 for ri

NL = F ·C ·
T

T − 1

· T
XL−1−1
X−1 use geometric sum

L =
⌈
1 + logX ((X − 1) · logT (

N
F

·
1

C + 1
·
T − 1

T
) + 1)

⌉
rearramge (18)

C OPTIMIZING THE BLOOM FILTERS
In this Appendix, we derive the optimal false positive rates

(FPRs) to assign Bloom filters at different levels. We frame the

problem as a constrained multivariate optimization problem

whereby the objective function to minimize is the sum of

FPRs p, the constraint is the memory available, and the vari-

ables to optimize are the FPRs at each of the levels. To solve

the problem, we use the method of Lagrange Multipliers

(LM). We frame the problem in standard form in Equation 19,

where д denotes the objective function, derived by summing

at the FPRs across all levels (i.e., p =
∑L
1
ai · pi ), and where y

denotes the constraint, derived by summing up the memory

footprint across all levels (i.e.,

∑L
i=1 (B ·Ni ·ln(1/pi ))/ln(2)2).

д = ΣLi=1(ai · pi ) − p

y = B · NL ·
©­« ln(

1/pL )

ln(2)2
+

L−1∑
i=1

1

C
·
ri − 1

ri
·

(
T
ri

) 1

X−1
·
ln(1/pi )

ln(2)2
ª®¬

(19)

The Lagrangian L is defined in terms of the objective

function and the constraint as L = y + λ ·д. We differentiate

the Lagrangian with respect to the FPR at the largest level

pL , set the partial derivative to zero, and rearrange in terms

of pL in Equation 20. We do the same for pi in Equation 21.

pL =
1

aL
·

B · NL
ln(2)2 · λ

(20)

pi =
1

ai
·
1

C
·
ri − 1

ri
·

(
T
ri

) 1

X−1
·

B · NL
ln(2)2 · λ

(21)

Next, we equate Equations 20 and 21 to to express pi in
terms of pL in Equation 22.

pi =
pL · aL

ai
·
1

C
· (
T
ri

)
1

X−1 ·
ri − 1

ri
(22)

We use Equation 22 to derive the value of pL with respect

to the overall sum of FPRs p in Equation 23.

p =
L∑
i=1

pi · ai definition of p

p = aL · pL · (1 +

L−1∑
i=1

1

C
· (
T
ri

)
1

X−1 ·
ri − 1

ri
) use Eq. 22 for pi

p = aL · pL · (1 + 1/C) sum simplifies to 1/C .

pL =
p
aL

·
C

C + 1
rearrange in terms of pL (23)



By plugging in Equation 23 for pL into Equation 22, we

obtain the value of pi in terms of the sum of FPRs p as well.

The overall result is given in Equation 12 in Section 4. By

further taking X to its limit value of 1 and plugging 1 for aL
and T − 1 for ai , we obtain Equation 5 for CLL in Section 3.

D MEMORY FOOTPRINT DERIVATION
In this Appendix, we derive the memory footprint needed

by Bloom filters across all levels to guarantee a given point

read cost, given by the sum of FPRs p across all filters. We

start by focusing on the case where the growth exponential

X approaches one. Equation 24 sums up the memory for

filters across all levels with respect to each levels’ capacity

Ni and FPR pi (derived in Appendices A and C). We simplify

this sum by arranging the exponents within the logarithm in

the third step as geometric and arithmetico-geometric series,

both of which converge into closed-form expressions.

∑L
i=1 B ·Ni ·

ln(1/pi )
ln(2)2

= − N ·B ·C
C+1 ·

(
ln(

p
CZ

· C
C+1 )+

1

C ·T−1
T ·

∑L−1
i=1

(
1

T L−i−1
·ln

(
p
ai

·T−1
T · 1

C+1 ·
1

T L−i−1

)))

M = − C
C+1 ·

©­­«ln
(
p
CZ

· C
C+1

)
+ 1

C ·T−1
T ·ln

©­­«
(

p
(T−1)K

·T−1
T · 1

C+1

) (∑L
i=1

1

T i−1

)
·

(
1

T

) (∑L
i=1

i
T i

) ª®®¬
ª®®¬

= − C
C+1 ·

©­«ln
(
p
CZ

· C
C+1

)
+ 1

C ·T−1
T ·ln

©­«
(

p
(T−1)K

·T−1
T · 1

C+1

) T
T−1

·

(
1

T

) T
(T−1)2 ª®¬ª®¬

= ln

(
1

p
·C

Z ·C
C+1 ·

C + 1

C
C
C+1

· (T − 1)
K−1
C+1 · T

T
(C+1)·(T−1)

)
(24)

The final result is expressed in terms of M , the average

number of bits per entry across all filters needed to guarantee

a given value of p. For CLL, Z is set to 0 while K is set to 1.

This allows to further simplify into Equation 6 in Section 3.

In Equation 25, we rearrange Equation 24 in terms of the

sum of FPRs p to be able to predict point read cost with

respect to a memory budgetM .

p = e−M ·ln(2)2 ·C
Z ·C
C+1 ·

C + 1

C
C
C+1

· (T − 1)
K−1
C+1 · T

T
(C+1)·(T−1)

(25)

We now continue to the more general case where the

growth exponential X can assume values higher than one. It

is harder in this case to derive a closed-form expression as the

terms from across different levels not add up to well-known

convergent series. Nevertheless, as discussed in Section 4, the

largest three levels with Wacky always dominate the mem-

ory footprint. Therefore, we can approximate the memory

requirement (to within 10%) based on the memory footprint

for the largest three levels, given in Equation 26.

M ≈ ML +ML−1 +ML−2

ML = −
N

ln(2)2
·

C
C + 1

· ln

(
p ·

C
C + 1

)
ML−1 = −

N
ln(2)2

·
1

C + 1
·
T − 1

T
· ln

(
p

aL−1
·

1

C + 1
·
T − 1

T

)
ML−2 = −

N
ln(2)2

·
1

C + 1
·
1

T
·
TX − 1

TX
· ln

(
p

aL−2
·

1

C + 1
·
1

T
·
TX − 1

TX

)
(26)

E SETTING CAPACITIES TOP-DOWN
In this appendix, we describe howCLL, LSM-bush andWacky

set capacities to Levels 1 to L− 1 top-down based on the data

size at Level L. After every major compaction, we use the

size of the resulting run NL to compute the overall required

capacity N across all levels (i.e., N = NL · C+1C ). We compute

the number of levels L based on Equation 10 with respect to

N (the number of levels may stay the same, or it may grow

or shrink depending on the volume if insertions/deletions in

the workload). We then set capacities to the different levels

with respect to these values of N and L using Equation 9.

Effectively, this approach adjusts the widths of Levels 1 to

L − 1 to ensure that their cumulative data size is smaller by

at least a factor of C than the data size at Level L.

F HASH TABLES FOR SMALLER LEVELS
As LSM-bush can contain a larger number of runs than with

traditional LSM-tree designs, having to check a Bloom filter

for every run during a point read can become a CPU bottle-

neck. To prevent this bottleneck, LSM-bush replaces Bloom

filters at smaller levels by one hash table per level that maps

from each key in the level to the physical block that contains

the key’s entry on a run in storage. This replaces numerous

Bloom filter checks by a single hash table probe. To control

memory overheads for these hash tables, they do not store

actual keys but instead use a b bits hash digest for each key

called a key signature, which can lead to a false positive at a

rate of 2
−b

[3, 18, 24].

Key Signature Size. The first question is how to set key

signature sizes so that the expected number of false positives

(and thus I/Os) does not increase. With only Bloom filters,

the expected I/O cost at Level i is pi ·ai . To ensure this bound
continues to hold, we set the size of key signatures at Level i
to each be ⌈(pi ·ai )⌉ bits, wherepi and ai come from Equations

12 and 13. This ensures that the FPR for one hash table probe

at Level i is the same as the sum of FPRs across all the Bloom

filters that it replaces, and so point read cost remains the

same. As a result, each key signature amounts to 2-3 bytes.

With an additional 4-5 byte pointer to storage and some extra

hash table capacity to avoid collisions, a hash table requires

≈ 64 − 128 bits per entry.

Choosing Levels. As a hash table requires more bits per

entry than Bloom filters, the next question is how to choose

which levels to use hash tables for so as to keep memory

modest while still eliminating most filter checks. To this end,

we observe that smaller levels, which contain the most runs

in the system, also contain far fewer entries than at larger



level
runs 
ai

buffer multiple 
Ni / P

FPR per level    
ai · pi

HT or BFs?
HT or BFs

bits per entry
FP 

bits per entry

1 255 510 0.04% HT 60.0 4

2 15 7680 0.59% HT 56.0 4

3 3 24576 1.88% BFs 10.8 4

4 1 32768 2.50% BFs 7.7 4

5 1 65536 5.00% BFs 6.2 4

totals: 275 131070 10.00% 6.8 4
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Figure 11: A per-level overview of QLSM-bush.

levels. This means that using a hash table for these smaller

levels, especially for Level 1, would increase the memory

footprint by a modest amount while still eliminating most

filter checks. While our design exposes this choice to the

application, we observe that as a rule of thumb using Bloom

filters for the largest three levels and hash tables for smaller

levels is a good compromise. For example, with QLSM-bush

this increases memory by ≈ 10% while reducing the number

of filter checks fromO(
√
N ) to 10-11 checks as there is a small

number of runs at the largest levels.

Recovery. Unlike Bloom filters, hash tables are tricky to

recover after a crash because they are not immutable but con-

tinue changing as more runs get added to a level. To be able

to recover a hash table without relying on checkpoints or on

rereading base data, we persist a small amount of metadata

in storage to allow us to rebuild a hash table after recovery

from scratch. In particular, whenever a new run gets created

at a level that uses a hash table, we persist an additional

array of hash-pointer pairs for all entries within the new run.

The pointer identifies the block whereon the corresponding

entry resides. For the hash, the first ⌈log
2
(Ni · B)⌉ bits are

used to identify the matching bucket, while the remaining

⌈log
2
(1/(ai ·pi ))⌉ bits comprise the key signature, which gets

reinserted into the bucket during recovery along with the

pointer. The size of these hash-pointer pairs is 12-13 bytes

per entry, and so this does not significantly amplify storage

overheads relative to base data.

G EXAMPLE OF QLSM-BUSH INSTANCE
Figure 11 provides a per-level breakdown of QLSM-bush (T=2,

C=1) for a 1TB data size of 128B entries with 8B keys over a

storage device with 4KB blocks. The buffer size is 8MB, and

the design is tuned to assume a sum of false positive rates of

10% (at most 0.1 extra I/O per point read). For each level, the

figure expresses the number of runs ai , the capacity of each

level as a multiple of the buffer size Ni/F , the false positive
rate per level ai · pi , whether a level uses a hash table (HT)

or Bloom filters (BFs), and the total number of bits per entry

needed for hash tables or Bloom filters, and fence pointers.

For levels with hash tables, the number of bits per entry

includes a 48 bit pointer while the rest of the bits comprise a

key signature (Level 1 for LL-bush has 61 − 48 = 13 bit key

signatures). For the fence pointers, each of them consists of

16B key-pointer pair that includes one 8B key. Since a storage

block can fit 4KB/128B= 32 entries and we need one fence

pointer per block, the fence pointers require (16/32) · 8 = 4

additional bits per entry. The bottom row shows statistics for

the total number of runs, the total data size as a multiple of

the buffer size, the overall false positive rate, and the average

number of bits per entry needed across all levels

H OTHER KEY-VALUE STORE DESIGNS
In-MemoryKey-Value Stores. In-memory key-value stores

such as Memcached [43] and Redis [50] store the entire

dataset in memory to avoid the I/O overheads of storage.

In this work, we focus on applications for which the data

size is much larger than the available memory.

BigTable Model. While we focus on a key-value store data

model in this paper that reflects systems such as RocksDB,

Voldemort, and Dynamo, Wacky may also be applied within

the BigTable model for systems such as HBase, Cassandra

or Cloud BigTable. The BigTable model is a sparse three-

dimensional map whereon (1) data is indexed based on row

ID, column ID, and timestamp, and (2) data can be divided

across multiple column families, each of which is an indepen-

dent physical structure. A possible performance problem that

can arise within this model is that data belonging to a given

row can be fragmented across multiple runs. This is a general

problem for log-structured designs, and structures such as

LSM-bush can exacerbate this problem by having more rows

over which data can be fragmented. We can thereby leverage

Wacky to use LSM-bush only for column families that are

subject to puts over entire rows at a time so that data cannot

be fragmented, and/or for workloads where reads are based

on row+column ID pairs so that they do not require materi-

alizing a row from across multiple runs. On the other hand,

we can leverage Wacky to use more merge-greedy LSM-tree

designs for column-families for which rows are fragmented

and there are many row+column gets.


