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ABSTRACT

Modern key-value stores typically rely on an LSM-tree in storage
(SSD) to handle writes and Bloom filters in memory (DRAM) to
optimize reads. With ongoing advances in SSD technology shrink-
ing the performance gap between storage and memory devices, the
Bloom filters are now emerging as a performance bottleneck.

We propose Chucky, a new design that replaces the multiple
Bloom filters by a single Cuckoo filter that maps each data entry to
an auxiliary address of its location within the LSM-tree. We show
that while such a design entails fewer memory accesses than with
Bloom filters, its false positive rate off the bat is higher. The reason
is that the auxiliary addresses occupy bits that would otherwise be
used as parts of the Cuckoo filter’s fingerprints. To address this, we
harness techniques from information theory to succinctly encode
the auxiliary addresses so that the fingerprints can stay large. As a
result, Chucky achieves the best of both worlds: a modest access
cost and a low false positive rate at the same time.
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1 INTRODUCTION

Modern KV-stores rely on an LSM-tree to persist data in storage. An
LSM-tree buffers new data in memory, flushes the buffer to storage
as a sorted run whenever it fills up, and compacts runs across a
logarithmic number of levels [79]. To optimize application point
queries, there is an in-memory Bloom filter [11] for each run to rule
out runs that do not contain a target entry. Such designs are used
in OLTP [45], HTAP [71], social graphs [74], FTL design [12, 27],
data series [61-63], blockchain [34], stream-processing [21], etc.

Problem 1: Changing Storage Media. LSM-tree was originally
designed for HDDs, which are 5-6 orders of magnitude slower than
DRAM memory chips. The advent of SSDs, however, has shrunk
the performance gap between storage and memory to 2-3 orders
of magnitude [10, 30, 37]. Today, a memory I/O takes ~ 100 ns
while a read I/O on, say, an Intel Optane SSD takes ~ 10 us. Hence,
memory access is no longer negligible relative to storage access.
For LSM-trees, especially modern designs with tens to hundreds of
runs [59, 76, 85, 86, 98], querying a Bloom filter at ~ 100 ns for each
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Figure 1: Existing filters for LSM-tree can not scale query
cost, construction cost and the false positive rate all at once.

run can approach and even exceed the latency of the SSD I/O(s)
that fetch the target entry from storage.
Problem 2: Workload Skew. KV-stores typically maintain an in-
memory block cache to store frequently accessed data blocks and
thereby optimize for skew, which is often common [41]. Querying
a block cache still requires to first traverse potentially all the Bloom
filters to identify the run that contains the target entry. As there
are no storage I/Os in this case, the cost of traversing the Bloom
filters becomes even more dominant.
Problem 3: Read vs. Write Contention. To mitigate the Bloom
filters’ query cost, one can tune the LSM-tree to merge more fre-
quently so that there are fewer runs and thus fewer Bloom filters
to access. This, however, increases the Bloom filters’ construction
costs. A Bloom filter is immutable and has to be rebuilt from scratch
during each compaction. Compacting more frequently, therefore,
entails rebuilding Bloom filters more frequently. It was recently
reported that Bloom filter construction can amount to over 70% of
performance overheads on the write path [58]. Thus, the access
and construction costs of Bloom filters contend with each other in
an LSM-tree context, as depicted conceptually in Figure 1 Part (A).
Problem 4: Scalability with Data Size. As the data size grows,
more Bloom filters need to be queried and constructed across more
LSM-tree levels. Hence, the overheads of querying and construct-
ing Bloom filters grow too. As shown in Figure 1 Part (A), this
causes the read vs. write trade-off curve to move outwards and
leave applications with worse trade-offs to choose between. With
data growing exponentially across many modern applications, the
outcome is rapidly deteriorating performance.
Research Question. Can we devise a replacement for Bloom filters
that exhibits more robust and scalable performance for LSM-tree
with respect to (1) storage media, (2) workload skew, (3) LSM-tree
tuning, and (4) data size?
Cuckoo Filter: The Promise. Over the past decade, a new family
of data structures emerged as an alternative to Bloom filters. These
structures operate by storing a small hash digest called a fingerprint
for every entry’s key within a compact hash table. They include
Quotient filter [9, 81], Cuckoo filter [39] and others [15, 44, 80, 96].
In this paper, we replace an LSM-tree’s multiple Bloom filters
by a Cuckoo filter variant that maps each data entry to both a
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Term Definition
N largest level size (entries)
P buffer size (entries)
T LSM-tree size ratio
L number of LSM-tree levels
Z number of sub-levels at largest level
K number of sub-levels at each of Levels 1 to L-1
Ai number of sub-levels at Level i
A number of sub-levels in the whole LSM-tree
M filtering memory budget (bits/entry)

Figure 2: LSM-tree variants and terms used to describe them throughout the paper. Each rectangle represents a sub-level.

fingerprint and to an auxiliary Level ID (LID). A LID is a small
string of bits that identifies where a given entry resides within the
LSM-tree. It points to the level (or part of a level) that needs to be
searched during a point read for a matching fingerprint within the
Cuckoo filter. The promise is to reduce filtering memory I/Os to a
small and constant number, an improvement over Bloom filters.
Scaling the False Positive Rate. Despite the promise of this ap-
proach, we also identify a challenge: keeping the false positive rate
(FPR) low and stable. The FPR is inversely related to the fingerprint
size. Under a constrained memory budget, the LIDs occupy bits that
would otherwise be used as parts of the fingerprints. Worse, as the
data grows, the number of levels in the LSM-tree grows too. This
requires increasing the LID size (in bits) to still be able to identify
every level (or part thereof). As a result, the LIDs “steal” more bits
from the fingerprints as data grows. This causes the FPR to increase
over time. The outcome is more storage I/Os, which harm perfor-
mance. We illustrate the challenge conceptually in Figure 1 Part (B)
using the curve labeled Cuckoo Filter with Integer Level IDs.
Insight: Level ID Compressibility. Our core insight in this paper
is that, fortunately, LIDs are extremely compressible. The reason
is the LSM-tree’s exponential growth; most entries reside at larger
levels. Hence, the distribution of LIDs within the Cuckoo filter is
heavily skewed: most LIDs correspond to the largest level while
exponentially fewer correspond to smaller levels. We can therefore
encode the LIDs of larger levels with fewer bits than the LIDs of
smaller levels to minimize the average LID size. The saved bits can
be assigned to the fingerprints to keep them large.

Chucky. We present Chucky: Huffman Coded Key-Value Store, a
new design that scales memory I/Os, memory footprint, and the
false positive rate at the same time. It achieves this by replacing
the Bloom filters by a Cuckoo filter with succinctly encoded (i.e.,
compressed) LIDs. We explore in detail the design space for LID
compression, and we identify and tackle the resulting challenges: (1)
how to align fingerprints and compressed LIDs within the Cuckoo
filter’s buckets, and (2) how to en/decode LIDs efficiently. We use
the saved bits to keep the fingerprints large and thus to keep the
FPR low and stable as the data grows.

Contributions. Our contributions are as follows.

(1) We show that the Bloom filters of LSM-tree are emerging as
a memory I/O bottleneck as SSDs evolve and get faster.

(2) We replace the Bloom filters by a Cuckoo filter that maps
data entries to their locations within the LSM-tree.

(3) We show that level IDs are extremely compressible. We study
how to to efficiently en/decode them using Huffman coding.

(4) We show how to align compressed level IDs and fingerprints
within Cuckoo filter buckets to ensure good space utilization.

(5) We show experimentally that Chucky scales memory band-
width, memory footprint, and the FPR at the same time.

2 STATE-OF-THE-ART: LSM & BLOOM

LSM-tree consists of multiple levels of exponentially increasing
capacities. Level 0 is an in-memory buffer (a.k.a memtable), typically
implemented as a skip list or a hash table. All other levels are in
storage. The application inserts key-value entries into the buffer.
When the buffer fills up, it gets flushed to storage.

Merge Policy. An LSM-tree’s merge policy dictates which data to
merge in storage and when. While merge policies can be formalized
in different ways, we adopt the Dostoevsky framework [28] as it
generalizes several well-known policies. The number of levels L is
[logy (N/P)], where N is the number of entries at the largest level,
P is the buffer size, and T is the capacity ratio between any two
adjacent levels (T>2). Each level consists of one or more sub-levels,
where a sub-level is a placeholder for one chunk of sorted data. At
the largest level, there are Z sub-levels (1< Z<T). At each of the
smaller levels, there are K sub-levels (1 < K< T). Figure 2 shows
how sub-levels are numbered for different configurations of the
parameters Z and K. The capacity at Level i is P - T! entries, and
it is equally divided among the sub-levels at Level i. Equation 1
denotes A; as the number of sub-levels at Level i and A as the overall
number of sub-levels. The number of levels L and the number of
sub-levels A both grow with the data size.

{I( for1<i<lL
;=

L
5 A:;A,—:(L—1)~K+Z (1)

else

There is zero or one run at each sub-level. A run comprises key-
value entries sorted by key. Different runs may have overlapping
key ranges. Each run may further be divided into smaller files
with non-overlapping key ranges called Sorted String Tables (SSTs),
though we will use run as the unit of data in the paper.

When all sub-levels at Level i have reached capacity, their con-
stituent runs get merged into the highest sub-level at Level i + 1 that
is below capacity. If there is already a run at this target sub-level, it
is included in the merge. Hence, the jM youngest run at Level i is
always at sub-level number (i — 1) - K + j.

The parameters K and Z can be co-tuned to assume different
trade-offs. Figure 2 shows how to tune them to assume three merge
policies: (1) leveling, best for range reads, (2) tiering, best for writes,
and (3) lazy leveling, best for point reads. The size ratio T can be
tweaked to fine-tune these trade-offs, though Figure 2 fixes it to four.
When the size ratio T is set to two, its lowest possible setting, the
three merge policies behave identically. As we increase T with each
policy, their behaviors diverge. With a vision towards navigable
systems that can learn and adapt across a wide design space to
optimize for different workloads [5, 6, 47, 52-57], we design Chucky
to span this entire wide compaction design space.

Updates & Deletes. Updates and deletes are performed out-of-
place by inserting a key-value entry with the updated value into



Leveling Lazy-Leveling Tiering
application query O(L) O(L-T) O(L-T)
O(L-T) O(L+T) o(L)
Table 1: Blocked Bloom filters’ memory I/O complexities.

application update

the buffer (for a delete, the value is a tombstone). Whenever runs
that contain entries with the same key are merged, older versions
are discarded and only the newest version is kept. To always find
the most recent version of an entry, a query traverses the runs from
youngest to oldest (from smaller to larger levels, and from lower
to higher sub-levels within a level). It terminates when it finds the
first entry with a matching key. If this entry’s value is a tombstone,
the query returns a negative result.

Fence Pointers. For each run, there are fence pointers in memory
that comprise the min/max key at every data block. They allow
queries to binary search for the relevant data block that contains
a given key in =~ log(N) memory I/Os so that this block can be
retrieved cheaply with one storage I/O.

Bloom Filters. For each run in the LSM-tree, there is an in-memory
Bloom filter (BF), a space-efficient probabilistic data structure used
to test whether a key is a member of a set [11]. A BF is an array of
bits with h hash functions. Each key is mapped using these hash
functions to h random bits, setting them from 0 to 1 or keeping them
set to 1. Checking for the existence of a key requires examining its
h bits. If any are set to 0, we have a negative. If all are set to 1, we
have either a true or a false positive. The false positive probability
(FPP) is 2~M10(2) where M is the number of bits per entry. As we
increase M, the probability of hash collisions decreases and so the
FPP drops. A BF does not support range reads or deletes. The lack
of delete support means that a new BF has to be built from scratch
for every new run as a result of compaction.

A BF entails h memory I/Os for an insertion or for a query to an
existing key. For a query to a non-existing key, it entails on average
two memory I/Os since ~ 50% of the bits are set to zero and so the
expected number of bits checked before incurring a zero is two.
Blocked Bloom Filters. To optimize memory I/Os, Blocked Bloom
filter has been proposed as an array of contiguous BFs, each the size
of a cache line [66, 84]. A key is inserted by first hashing it to one of
the constituent BFs and then inserting the key into it. This entails
only one memory I/O for any insertion or query. The trade-off is
a slight FPP increase. RocksDB has adopted blocked BFs. We use
standard and blocked BFs as baselines in this paper, and we focus
more on blocked BFs as they are the tougher competition.
Memory I/O Analysis. With blocked BFs, the overall cost of a
point query is (L — 1) - K + Z memory I/Os, one for each sub-
level of the LSM-tree. The cost of an insertion/update/delete, on
the other hand, is the same as the LSM-tree’s write-amplification:
~ L1 (L - 1)+ L2} with Dostoevsky. The reason is that every
compaction that an entry participates in leads to one BF insertion,
which costs one memory I/O. Table 1 summarizes these costs for
each of the merge policies. It shows that query cost over the BFs can
be significant, especially with tiering and lazy leveling. Moreover,
the BF’s query and construction costs both increase with respect
to the number of levels L and thus with the data size. Finally, there
is an inverse relationship between the BFs’ query and construction
costs: the greedier we set the LSM-tree’s merge policy to be (i.e., by
fine-tuning the the parameters T, K and Z), query cost decreases as

there are fewer BFs while construction cost increases as the BFs get
rebuilt more frequently. Can we better scale these costs with respect
to the data size while also alleviating their read/write contention?
False Positive Rate Analysis. We define the false positive rate
(FPR) as the sum of FPPs across all filters. The FPR expresses the
average number of I/Os due to false positives that occur per point
query over the whole LSM-tree. Equation 2 expresses the FPR for
most KV-stores, which assign the same number of bits per entry
to all their BFs. This approach, however, was recently deemed sub-
optimal. The optimal approach is to reassign ~ 1 bit per entry from
the largest level and to use it to assign linearly more bits per entry
to filters at smaller levels [25, 26]. While this increases the largest
level’s FPP, it exponentially decreases the FPPs at smaller levels
such that the overall FPR is lower, as expressed in Equation 3 [28].

FPRypiform =2 MM (K - (L-1)+2) @)

T

FPRoprimar =27 . 27kt 22 3)
Equation 3 states that with the optimal approach, the relationship
between memory and FPR is independent of the number of levels
and thus of data size, unlike Equation 2. The reason is that as the
LSM-tree grows, smaller levels are assigned exponentially lower
FPRs thus causing the sum of FPRs to converge. It is imperative
that any replacement we devise for the LSM-tree’s Bloom filters
either matches or improves on the FPR expressed in Equation 3.

3 PROMISE: LSM-TREE & CUCKOO FILTER

Cuckoo filter [39] (CF) is one of several data structures [9, 15, 44,
81, 96] that recently emerged as alternatives to Bloom filters. In
their core, these structures all employ a compact hash table that
stores fingerprints of keys, where a fingerprint is a string of F bits
derived by hashing a key. CF comprises an array of buckets, each
with S slots for fingerprints. During insertion, an entry with key k
is hashed to two bucket addresses b1 and by using Equation 4. A
fingerprint of key k is inserted into whichever bucket has space. If
both buckets are full, however, some fingerprint from one of the two
buckets is randomly chosen and swapped to its alternative bucket
to clear space. By virtue of using the xor operator, the right-hand
side of Equation 4 allows to always compute an entry’s alternative
bucket using the fingerprint and current bucket address without
the original key. The swapping process continues recursively either
until a free slot is found for all fingerprints or until a swapping
threshold is reached, at which point the insertion fails.

by = hash(k) by = by ® hash(k's fingerprint) (4)

We employ a CF with S set to four slots per bucket through the
paper. Such a tuning can reach 95% space utilization with high
probability without incurring insertion failures and with only 1-2
amortized swaps per insertion. The false positive rate is ~ 2-5-27F,
where F is the fingerprint size in bits. Querying entails at most two
memory I/Os as each entry is in one of two buckets.

Promise. Cuckoo filter supports storing updatable auxiliary data
for each entry alongside its fingerprint. We propose to replace
the LSM-tree’s multiple Bloom filters with a CF that maps each
data entry not only to a fingerprint but also to a Level ID (LID),
mapping to the sub-level that contains the entry. The promise is to
allow finding the run that contains a given entry with at most two
memory I/Os, far more cheaply than with blocked Bloom filters.
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Figure 3: Chucky uses a Cuckoo filter to map entries in the LSM-tree, and it keeps this mapping up-to-date during compactions.

The FPR, meanwhile, is given in Equation 5 by subtracting the LID
size D from the memory budget M. The challenge is keeping D
small so that the FPR also stays small.

FPR~2.-S-27F=2.5.27M+D 5)

Case-Study. SlimDB [86] is the first system to replace an LSM-
tree’s Bloom filters by a Cuckoo filter with LIDs. It therefore pro-
vides an interesting case-study. SlimDB encodes LIDs as fixed-
length integers. Each LID therefore comprises at least log,(A) bits
to identify all runs uniquely, where A is the total number of sub-
levels from Equation 1. By plugging in log,(A) as D in Equation 5
and substituting for A, the FPR simplifies into Equation 6, which
indicates that the FPR increases with the number of levels L. The
reason is that the LIDs take away bits from the fingerprints as the
data grows to be able to identify more sub-levels uniquely. Is it
possible to keep the FPR lower and stable as the data size grows?

FPRpinary 2-S 2™ (K -(L-1)+2) (©6)

Another issue with SlimDB is that it accesses storage before each
application write to check if the entry in question exists. If so, it
modifies the entry’s LID within the CF to reflect updated entry’s
location. This entails a substantial overhead on the write path. Can
we keep the LIDs up-to-date without read-before-write operations?

4 CHUCKY

Chucky is a novel LSM-tree filter that simultaneously scales mem-
ory bandwidth, memory footprint, and the false positive rate (FPR).
It achieves this by replacing the Bloom filters by a Cuckoo filter
(CF) variant that uses level IDs to map each entry to its sub-level
within the LSM-tree. It further innovates along two directions.

Opportunistic Maintenance. Chucky keeps the level IDs within
the CF up-to-date opportunistically during merge operations at no
additional storage I/O cost. We discuss this in Section 4.1.

Level ID Compression. Chucky compresses level IDs to prevent
their size from increasing and stealing bits from the fingerprints as
the data grows. Thus, Chucky keeps the FPR low. We show how
to compress level IDs in Section 4.2. We identify and address the
implications of compressed level IDs on bucket alignment and com-
putational efficiency in Sections 4.3 and 4.4, respectively. Section
4.5 covers miscellaneous design considerations .

4.1 Integration with LSM-Tree

Figure 3 illustrates Chucky’s architecture. For every data entry in
the LSM-tree, there is one CF entry consisting of a fingerprint and
a level ID (LID) that maps the entry’s current sub-level number.
Figure 3 also illustrates Chucky’s query and update workflows with
solid blue arrows and dashed red arrows, respectively.

Querying. Chucky processes a query by accessing both CF buckets
that the key maps to (using Equation 4). For all matching finger-
prints within these two buckets, it searches the corresponding runs
from youngest to oldest. In Figure 3, for example, the application
queries for key k7. Chucky maps this key to two buckets, both of
which have one entry with a matching fingerprint Y. One maps to
Sub-Level 4 and one to Sub-Level 5. The query searches Sub-Level 4
first as it contains younger data, but it incurs a false positive. It
then searches Sub-Level 5, where it successfully finds the target
entry. Since a query accesses two CF buckets, the overhead is two
memory I/Os, irrespective of the data size or merge policy.

Inserting New Data. Whenever the memtable gets flushed to stor-
age, Chucky adds a CF entry for each key in the batch (including for
tombstones). The overhead is approximately two memory I/Os per
entry as entries may be swapped across buckets to clear space. For
example, consider entry kj in Figure 3, for which there is originally
one version at Sub-Level 2. A new version of this entry is then
flushed into Sub-Level 1. Chucky adds a new mapping entry for
the new version while still keeping the older version’s mapping in
the CF. This is in contrast to SlimDB, which would issue a storage
I/O to check if an entry with key k; exists and if so update the
existing mapping entry’s LID in the CF. Hence, Chucky removes
SlimDB’s read-before-write operation. The outcome is better per-
formance. The trade-off is that Chucky has to map obsolete entries
in its CF until compaction, differently from SlimDB but similarly to
Bloom Filters, for which different versions of the same entry also
take up space across multiple filters until compaction. A problem
that can arise with Chucky is that CF buckets can overflow if too
many obsolete versions of the same entry exist, as their mapping
entries all get placed in the same pair of CF buckets. We handle
such overflows in Section 4.5 through extension buckets.

Maintenance. As an entry moves into a new sub-level during a
compaction, Chucky updates its LID in the CF as it is brought into
memory to be merged. For every obsolete entry identified during
compaction, on the other hand, Chucky finds and removes the
corresponding mapping entry from the CF. In Figure 3, for example,
compaction is triggered, merging the two runs at Sub-Levels 1 and 2
into one run at Sub-Level 3. During this operation, the older version
of key ki from Sub-Level 2 is removed from the CF. For the newer
version of ki, the LID is updated from 1 to 3 to reflect the new
sub-level. This approach does not involve any additional storage
I/Os on top of the ones that are already issued for compaction. The
memory access cost is 1.5 I/Os on average to find the target entry
across the two possible CF buckets that may contain it.
Interestingly, an entry’s LID does not need to be updated when
the entry stays at the same sub-level after compaction. For example,
suppose Sub-Levels 3 and 4 in Figure 3 now get merged with Sub-
Level 5, and the resulting run stays at Sub-Level 5 as it does not



Leveling Lazy-Leveling Tiering
application query 0o(1) 0o(1) o(1)
application update O(L) O(L) O(L)
Table 2: Chucky’s memory I/O complexities.

exceed its capacity. In this case, the LIDs of entries kg, ka4, k5, k¢ and
k7 stay the same. By contrast, with Bloom filters we would have to
rebuild the filter at Sub-Level 5 and reinsert each of these entries at
a significant memory I/O cost. Hence, a LID is updated at most L
times, once for each time it moves into a new level. The overall
overhead is therefore at most = 1.5 - L amortized memory I/Os per
application insert/update/delete, irrespective of the merge policy.

Memory I/0 Complexities. Table 2 summarizes the memory I/O
complexities of Chucky. Relative to the BFs in Table 1, Chucky’s
core advantage is reducing query cost to a small constant that is
independent of the data size and of the merge policy. Chucky also
reduces the update cost complexities for leveling and lazy leveling,
thus eliminating the dependence of update cost on the merge policy.
In practice, for tiering and lazy leveling, Chucky’s update cost of
~ 1.5 - L memory I/Os per entry may be slightly more expensive
than with blocked BFs. This, however, is counterbalanced by the
substantial point read cost reduction.

Interplay with CPU Caching. For workloads with point skew,
whereby the same data entries are repeatedly read by the appli-
cation, Chucky can accommodate a larger working set within the
CPU caches. The reason is that only two CF buckets need cached for
any frequently accessed entry. With blocked BFs, however, at most
A filters need to be cached for such an entry. On the other hand,
for workloads with areal skew, whereby entries in the same tempo-
ral or spatial area are more likely to be read, BFs may better lend
themselves to CPU caching as they are more granular temporally
(across sub-levels) and spatially (across SSTs within a sub-level). In
terms of update cost, BFs for smaller runs of the LSM-tree may in
practice fit in the CPU caches and thus entail fewer memory I/Os
than predicted in Table 1. The effects of CPU caching are subtle.
While workloads favoring BFs may be envisioned, Chucky gives
better worst-case guarantees and thus renders performance more
robust across all cases and especially as the data grows.

4.2 Compressing Level IDs

This section establishes theoretical bounds on the compressibility
of LIDs and explores their encoding design space in detail.
LID Probability Distribution. Equation 7 denotes p; as the frac-
tion of the LSM-tree’s overall capacity at Level i. The expression on
the left is more accurate but quickly converges to the expression
on the right as the number of levels grows. As expected, capacities
of smaller levels are exponentially decreasing.
T-1 T T-1 1
T T TL Jm pi = @
Equation 8 denotes f; as the fraction of the LSM-tree’s capacity
at Sub-Level j, which is a part of Level [j/K]. Equation 8 is derived
by dividing the level’s capacity p[;/x| (from Eq. 7) by the number of
sub-levels Apj/xq at that level (from Eq. 1). For example, in Figure 3
Sub-Level 5 is at Level [5/2] = 3, and so it comprises a fraction of
f3/A;s =~ 0.62 of the overall LSM-tree’s capacity.
Pri/K1
= A

pi

®)

Let us assume that all sub-levels of the LSM-tree are filled up
to capacity. Let us also assume that the average data entry size is
the same in different runs. Under these two assumptions, Equa-
tion 8 gives the probability that a randomly selected LID from the
Cuckoo filter corresponds to Sub-Level j. In other words, Equation 8
becomes a probability distribution of the LIDs within the CF.

The assumption that all sub-levels are full reflects the case where
memory pressure is highest. To optimize memory footprint for the
worst-case, we maintain this assumption for the rest of Section 4.
Entropy. Equation 9 derives the Shannon entropy of the LID prob-
ability distribution, which represents the average number of bits
needed to represent a LID after maximal compression. We derive it
by stating the definition of entropy on the left-hand side, plugging
in Equations 8 for f}, taking the number of sub-levels A and thus
the data size to infinity, and simplifying. Interestingly, the entropy
converges with respect to the number of sub-levels A and hence
with the data size. The intuition is that the exponential decrease
in LID probabilities for smaller levels trumps the fact that LIDs at
smaller levels would require more bits to represent uniquely.
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Chucky’s FPR Lower Bound. By plugging in the entropy H in
Equation 9 as the LID size D in Equation 5, we obtain an optimistic
FPR approximation for Chucky in Equation 10. This is the lowest
we may expect the FPR to be by virtue of compressing each LIDs as
much as possible and assigning all remaining bits to the fingerprints.
We observe that this bound is asymptotically lower with respect
to data size than the FPR for a CF with integer encoded LIDs in
Eq. 6. It is also asymptotically lower than the FPR upper bound for
uniformly allocated Bloom filters in Eq. 2. Finally, in comparison
to the FPR upper bound with optimally allocated Bloom filters
in Equation 3, we observe that while Equation 10 has a higher
multiplicative constant of 2 - S, the FPR decreases more quickly
with respect to memory (i.e., « 2~M as opposed to oc 27Mn(2))
This implies that for a high enough memory budget (M > 10 bits per
entry), Chucky should be able to beat state-of-the-art Bloom filters
in terms of FPR. This theoretical finding reaffirms our approach.

T
TT-1
T-1

FPRepyeky 22-5-27M .27 KT . (10)
Huffman Coding. Chucky uses Huffman coding [46] to compress
LIDs in practice. As input, the Huffman encoder takes the LIDs
and their probability distribution (i.e., Eq. 8) for a particular LSM-
tree configuration (i.e., of T, K, Z and L). As output, it returns a
code to represent each LID, where LIDs with a higher probability
are assigned shorter codes. It does this by creating a binary tree
from the LIDs by connecting the least probable LIDs first as sub-
trees. A LID’s ultimate code length corresponds to its depth in the
resulting tree. Figure 4 illustrates an example for an LSM-tree with
labeled LIDs and their probabilities from Eq. 8. For example, LID
6 contains a fraction of 5/124 ~ 4% of the LSM-tree’s capacity, and
therefore, when all sub-levels are full, * 4% of all entries in the
Cuckoo filter have a LID of 6. The Huffman encoder creates the tree
shown alongside for this LSM-tree instance. The code for a given
LID is derived by concatenating the tree’s edge labels on the path
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Figure 5: Compression causes the
LIDs’ average code length to converge
with respect to data size.

Figure 4: A Huffman tree encodes each
LID uniquely such that the average code
length is minimized.

from the tree’s root to the given LID’s leaf node. For instance, the
codes for LIDs 4 and 9 are 011011 and 1, respectively.
Decodability. With Huffman coding, no code is a prefix of another
code [46]. This property allows for unique decoding of an input bit
stream by traversing the Huffman tree starting at the root until we
reach a leaf, outputting the LID at the given leaf, and then restarting
at the root. For example, the input bit stream 11001 gets uniquely
decoded into LIDs 9, 9 and 7 based on the Huffman tree in Figure 4.
This property allows us to uniquely decode all LIDs within a bucket
without the need for delimiting symbols.

Average Code Length. We measure the encoded LIDs’ size using
their average code length (ACL), defined as Z]f.lzl lj - fj, where [
is the code length assigned to LID j. For example, this equation
computes 1.52 bits for the Huffman tree in Figure 4. This is a saving
of 62% relative to integer encoding, which would require four bits
to represent each of the nine LIDs uniquely.

Memory Footprint Analysis. It is well-known in information
theory that an upper bound on a Huffman code’s ACL is the entropy
plus one [46]. The intuition for adding one is that each code length
must be rounded up to an integer number of bits. We express this
as ACL < H + 1, where H is the entropy from Eq. 9. We therefore
expect the ACL to also converge and become independent of the
data size, similarly to Eq. 9. We verify this in Figure 5 by increasing
the number of levels for the example in Figure 4 and plotting the
Huffman ACL, which indeed converges (in contrast to integer-
encoded LIDs). The reason is that while runs at smaller levels are
assigned longer codes, they are exponentially less probable, so the
smaller codes of runs at larger levels dominate the ACL.

Tight ACL Upper Bound. Huffman coding is known to be optimal
in that it minimizes the ACL [46]. However, the precise ACL is
difficult to analyze because the Huffman tree structure is difficult
to predict from the onset. Instead, we can derive an even tighter
upper bound on the ACL than H + 1 by assuming a less generic
coding method and observing that the Huffman ACL will be at
least as short. Let us represent each LID using (1) a unary encoded
prefix of length L — i + 1 bits to represent Level i followed by (2) a
truncated binary encoding suffix of length ~ log,(A;) to represent
each of the A; sub-levels at Level i uniquely. This is effectively a
Golomb encoding [43]. We derive this encoding’s average length in
Equation 11 as ACLy g and illustrate it in Figure 5 as a reasonably
tight upper bound of the Huffman ACL.

1 T-1
+log, (KT -Z"T ) (11)

L
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ACLyp = gﬂo;pi-(L— i+1+log, (A7) = ——
Proximity to Entropy. Figure 5 also plots the entropy of the LID
probability distribution from Eq. 9. As shown, there is a gap between

the Huffman ACL and the entropy. Figure 6 shows that as we
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Figure 6: The average code length ap-
proaches the entropy as larger permu-
tations of LIDs are used.

6 7 8 9 10

increase the LSM-tree’s size ratio T, the gap between the ACL
and the entropy grows; the ACL approaches one while the entropy
tends towards zero. The reason is that a larger size ratio increases
the skew of the LID probability distribution by pushing a higher
proportion of the data to larger levels. With more skew, each LID
carries less information, leading to a lower entropy and thus higher
compressibility. However, each LID requires at least one bit to
represent with a code, and so the ACL cannot drop below one.
Hence, we cannot harness the increase in compressibility.

Level ID Permutations. As there are multiple LIDs at each CF
bucket, we can push the compression barrier of one bit per LID
by encoding multiple LIDs collectively. The Huffman Tree labeled
Perms. Figure 7 gives a toy example of how to encode two LIDs
at a time as permutations, obtained by feeding every possible per-
mutation of size S (two in this case) along with its probability (the
product of the constituent LIDs’ probabilities) into a Huffman en-
coder. As shown, the ACL now drops below one bit by virtue of
representing the most probable permutation with fewer bits than
the number of LIDs within it. Interestingly, Figure 6 shows that
as we increase the number of collectively encoded LIDs within a
permutation, the ACL approaches the entropy.

Level ID Combinations. To push compression even further, we
can encode combinations as opposed to permutations of LIDs. A
combination, unlike a permutation, disregards information about
the ordering of entries. As there are fewer possible combinations

than permutations of LIDs within a CF bucket ((5“54_1

) as opposed
to AS), we need fewer bits on average to represent them.

The probability distribution of LID combinations is multinomial.
For n independent trials, each leading to a success for one of k
categories, with each category having a fixed success probability,
the multinomial distribution gives the probability of any particular
combination of successes across the various categories. In our case,
the number of trials is the number of slots S per CF bucket, the
different categories are the A LIDs, and the success probabilities
are given by the LID probability distribution in Equation 8.

Now, let us denote ¢(j) as the number of occurrences of LID j
within a combination c. Equation 12 gives c,,,p as the probability
of combination c using the multinomial distribution. By feeding all
combinations and their probabilities into a Huffman encoder for
the example in Figure 7, we obtain the Huffman tree titled Combs,
where the combination 12 replaces the two prior permutations 12
and 21. For this combination, we have S = 2, ¢(1) = 1 and ¢(2) = 1,
and so its probability is 2! - (1/11) - (10/11) = 20/121.

A ffr(/')

J
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(12)
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Figure 7: Encoding level IDs as permu-
tations or combinations allows reducing

the average code length below one. ibility.

Combinations Analysis. The fact that combinations exclude in-
formation about ordering causes a reduction in entropy. Equation 13
derives H,,,;,p as the entropy of the LID combinations distribution
by using the multinomial distribution’s entropy function and plug-
ging in S, A, and Eq. 9. Figure 8 shows that as we increase the
combination size, H.y,,p drops relative to H as it eliminates more
ordering information. This leads to an increase in compressibility.

A S
Heomp = H - é . (logz(S!) - Z; ,Zo (f) A= £)5T og, (G| (13)
The ACL with combinations is . cc(le-¢pron)/S where C is the set
of all combinations and [ is the code length for Combination ¢ (we
divide by S to express the ACL per LID rather than per bucket). We
observe that the combinations ACL is strictly lower than the permu-
tations ACL in Figure 8, and that it converges with the combinations
entropy as we increase the number of collectively encoded LIDs. In
the rest of the paper, we continue with encoded combinations as
they achieve the best compression.

Bucket Structure. Each CF bucket in Chucky commences with one
combination code followed by S fingerprints. Since the combination
code excludes information about ordering, the fingerprints within
the bucket are sorted based on their LIDs in order to be able to infer
which fingerprint corresponds to which LID.

4.3 Aligning Level ID Codes with Fingerprints

Since LIDs are variable-length due to compression, aligning them
along with fingerprints within CF buckets becomes a challenge. We
depict this challenge in Figure 10 Part (A) with sixteen-bit CF buck-
ets that need to store one combination code for two entries along
with two five-bit fingerprints (FPs). This example is based on the
LSM-tree instance in Figure 4 except we now encode combinations
rather than every LID individually. The term I, ,, in the figure is the
code length assigned to a bucket with LIDs x and y. We observe that
some codes and fingerprints perfectly align within a bucket (Row I).
However, others exhibit underflows (Row II), meaning some bits at
the end of the bucket are unused. Still other buckets exhibit over-
flows (Rows III and IV), meaning the cumulative length of the code
and the fingerprints exceeds the bucket’s size. Underflows occur at
buckets with more probable LIDs (belonging to larger levels) as a
result of having shorter combination codes. They are undesirable
as they waste bits that could have otherwise been used for having
larger fingerprints. On the other hand, overflows occur in buckets
with less probable LIDs (belonging to smaller levels) as a result
of having longer combination codes. They are undesirable as they
require storing the rest of the bucket contents elsewhere. This can
result in poorer memory utilization and higher access costs.

Figure 8: Encoding level IDs as large
combinations maximizes compress-

Figure 9: Chucky resolves the con-
tention between fingerprint size and
bucket overflows via FM and FAC.

Figure 10 Part (A) implies that there is a contention between the

propensity of buckets to overflow and the fingerprint size. While
decreasing the fingerprint size alleviates overflows in some buckets,
it results in a higher false positive rate for the filter as a whole. We
substantiate this contention in Figure 9 with the curve labeled uni-
form fingerprints. The x-axis measures the fraction of overflowing
CF buckets while the y-axis measures the fingerprint size. Is it pos-
sible to eliminate this contention so as to guarantee few overflows
and large fingerprints at the same time?
Malleable Fingerprinting (MF). To enable better alignment of
codes and fingerprints, we introduce MF. The goal is to counterbal-
ance the fact that entries from larger levels tend to have smaller
combination code lengths and to use the spare space in the bucket
for having longer fingerprints. Thus, MF assigns entries at smaller
levels of the LSM-tree shorter fingerprints. As they get merged into
larger levels, however, they get assigned longer fingerprints.

The question with MF is how to choose a fingerprint length for
each level so as to carefully control the balance between fingerprint
lengths and bucket overflows. We frame this as an constrained op-
timization problem, where the objective is to maximize the average
fingerprint length, Zle FP; - p;, and where FP; be an integer de-
noting the length of fingerprints of entries at Level i. The problem
is defined for 2B > (**47), meaning the bucket size B has to be
at least large enough to identify all combinations uniquely. We
constrain the problem using a parameter NOV for the fraction of
non-overflowing buckets we wish to guarantee (ideally at least
0.9999). We use this parameter to define Cf,¢q as a subset of C
that contains only the most probable LID combinations in C such
that their cumulative probabilities fall just above NOV!. We define
Equation 14 as a constraint requiring that for all ¢ € Cg4, the code
length (denoted I.) plus the cumulative fingerprint length (denoted
crp) do not exceed the number of bits B in the bucket?.

Ve € Cpreq: CcFP+ Ilc <B (14)

While optimization problems involving integers are known to be
difficult to solve, we exploit the particular structure of our problem
with an effective hill-climbing approach shown in Algorithm 1. The
algorithm initializes all fingerprint lengths to zero. It then increases
larger levels’ fingerprint sizes as much as possible, moving to a next
smaller level if the overflow constraint in Equation 14 is violated.

Formally, Cfreq is defined such that mincgcfreq Cprob = MaXegCp, o Cprob and
NOV < ZCECfreq Cprob < NOV + mincecfreq Cprob-

2More concretely, for a combination ¢ let ¢(j) denote the number of occurrences of
the jM LID. Then ¢’s cumulative fingerprint length is cpp = 2;‘:1 FPpj/kq - ¢(j). The
term FP[j k7 is the fingerprint size set to the j LID, which is at Level [J/k].
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Figure 10: Storing compressed level ID codes with uniformly sized fingerprints leads to poor bucket alignment (Part A). We
solve this problem using Malleable Fingerprinting (Part B) and Fluid Alignment Coding (Part C).

1 fori < 1toLby1do FP; < FPp;, end
2 FPpax=M-1

3 fori < Lto1by—1do

4 for b « FPpin + 1to FPpqx by 1 do

5 temp « FP;

6 FPi —b

7 if overflow constraint is violated then
8 FP; « temp

9 FPpax = temp

Algorithm 1: Maximizing the average fingerprint size by

hill-climbing.
The rationale for lengthening larger levels’ fingerprints first is that
their entries are more common in the CF. Hence, the algorithm
follows the steepest ascent with respect to maximizing the objective
function. Figure 10 Part (B) gives an example of how MF allows for
entries from larger levels to have longer fingerprints (Row II) while
at the same time eliminating some overflows (Row III). The result
is a better balance between overflows and average fingerprint size
as shown in Figure 9.

Since MF assigns different fingerprint lengths to different ver-
sions of the same entry across different levels, a problem arises
whereby the Cuckoo filter can map these different versions of the
same entry to more than two CF buckets. The reason is that Equa-
tion 4 relies on an entry’s fingerprint to compute the alternative
bucket location, and so different fingerprint lengths would lead
to different bucket addresses. We resolve this by ensuring that all
fingerprints comprise at least FPy,;p, bits, and we adapt the CF to
determine an entry’s alternative bucket based on its first FPp,in
bits. This forces all versions of the same entry to reside in the same
pair of CF buckets. While this constraint slightly reduces the av-
erage fingerprint size given by Algorithm 1, it provides a lower
FPR variance as no entries are assigned very small fingerprints. In
accordance with the original CF paper [39], we set FPy,p to five
bits to ensure that an entry’s two buckets are independent enough
to achieve a 95% space utilization.

Fluid Alignment Coding (FAC). Figure 10 Part (B) illustrates that
even with MF, underflows and overflows still occur (Rows II and
IV, respectively). To further mitigate them, we introduce FAC. FAC
exploits a well-known trade-off that the smaller some codes are

assigned within a Huffman code, the longer other codes must be for
all codes to remain uniquely decodable. This trade-off is embodied
in the Kraft-McMillan inequality [64, 75], which states that for a
given set of code lengths L, all codes can be uniquely decodable
if12>Yer 27!. The intuition is that code lengths are set from a
budget amounting to 1, and that smaller codes consume a higher
proportion of this budget.

To exploit this trade-off, FAC assigns longer codes to occupy
the underflowing bits for the most probable bucket combinations.
As a result, the codes for less probable bucket combinations can
be made shorter. This creates more space in less probable buckets,
which is exploited to reduce overflows and to increase fingerprint
sizes for smaller levels. Figure 10 Part (C) illustrates this idea. The
combination in Row II, which is the most common in the system,
is now assigned a longer code by one bit to remove the underflow.
This allows reducing the code lengths for all other combinations,
which in turn allows setting longer fingerprints to entries at Levels 1
and 2 as well as to eliminate the bucket overflow in Row IV.

We implement FAC on top of MF as follows. First, we replace the
previous constraint in Equation 14 by a new constraint, given in
Equation 15. Expressed in terms of the Kraft-McMillan inequality,
it ensures that the fingerprint sizes stay short enough such that it
is still possible to construct non-overflowing buckets with uniquely
decodable codes for all combinations in C;q. It also ensures that
all bucket combinations not in Cr,q4 can be uniquely identified
using unique codes that are at most the size of a bucket B.

2~(B=¢FP)  forc € Crreq

1=z Z 27B, else (15)

ceC

Equation 15 does not rely on knowing Huffman codes in advance
(i.e., as Equation 14 does). Thus, we run the Huffman encoder after
rather than before finding the fingerprint lengths using Algorithm 1.
Furthermore, we run the Huffman encoder only on combinations
in Cfpeq while setting the probability input for a combination ¢
as 27(B=¢rp) g5 opposed to using its multinomial probability (in
Equation 12) as before. This causes the Huffman encoder to gen-
erate codes that exactly fill up the leftover bits B — cpp. For all
combinations not in Cr,.4, we set uniformly sized binary codes of
size B bits, which consist of a common prefix in the Huffman tree
and a unique suffix. Hence, we can decode both sets uniquely.
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Figure 11: The FPR decreases expo-
nentially as newer entries are ac-
cessed by queries.

The horizontal curve in Figure 9 shows that MF and FAC elimi-
nate the contention between overflows and fingerprint size when
applied together; fingerprints stay long and overflows stay rare
at the same time. The trade-off is that the average code length
becomes slightly longer than before. The reason is that by occupy-
ing the underflowing bits of the most probable combination codes,
FAC makes the ACL at least S bits long (> 1 bit per entry). This
means that achieving good bucket alignment requires sacrificing
some space. Figure 9 measures this sacrifice as the gap between the
curve for MF & FAC and the curve labeled theoretical maximum,
obtained by subtracting the entropy (from Eq. 13) from the memory
budget M. It stands as ~ 1/2 bit per entry for our example, a modest
price. We use MF and FAC by default for the rest of the paper.
Construction Time. The run-time complexity of Algorithm 1 is
O((L + M = Mpin) - |C]), where L + M — M,y;, is the number
of iterations and |C| is the cost of evaluating the constraint in
Equation 15. In addition, the time complexity of the Huffman en-
coder is O(|Crreql - 10gy(ICrreql))- To express these bounds more
3

loosely but in closed form, note that |Cr,¢q| < |C| = <

(A+S—-1)5- (%)S < AS. This workflow is seldom invoked, only
when number of LSM-tree levels changes, and it can be performed
offline. Its run-time is therefore practical. Each of the points in
Figure 9 takes a fraction of a second to generate.

False Positive Rate (FPR). Chucky’s FPR is tricky to precisely
analyze because the fingerprints have variable sizes that are not
known in advance. Instead, we conservatively approximate the FPR
to still allow reasoning about system behavior. We use the ACL
upper bound ACLy g from Equation 11 to slightly overestimate the
average combination code length per entry with FAC. By plugging
in ACLy g for D in Equation 5, we obtain Equation 16, for which
the interpretation is the expected number of false positives for a
query to a non-existing key.

M oL 1 T-1
FPRopuycky ~2-S-27M . 271 .KT - Z°T (16)

Figure 11 compares Equation 16 to Chucky’s actual FPR. The
x-axis varies the level whereon the target entry resides, where 6 is
the ID of the largest level and ‘none’ means the target entry does
not exist. The y-axis measures the average number of false positives
incurred per query. The FPR drops exponentially when the target
entry is at smaller levels. The reason is that a point read accesses
the relevant levels from smallest to largest (to be able to find the
most recent version of the entry), and it terminates once it finds the
first matching entry. As a result, exponentially fewer false positives
take place as there are, on average, exponentially fewer entries
within the target two buckets that correspond to even smaller levels
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Figure 12: The Huffman tree size con-
verges while the de/recoding table
sizes grow slowly with data size.
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Figure 13: The decoding table access
cost increases slowly with data size
until flattening at one memory I/0.

than where the target entry resides. The figure demonstrates that
Equation 16 predicts within reason the case where the target entry
does not exist, and that it provides a reliable upper bound in all
cases where the entry does exist.

4.4 Optimizing Decoding & Recoding

We now discuss how to efficiently decode and recode combinations
codes during application reads and writes.

Cached Huffman Tree. A Huffman code is typically decoded one
bit at a time by traversing the Huffman tree from the root to a
leaf node. A possible problem is that traversing it can require as
much as one memory I/O per node visited. This cost grows with the
data size as the Huffman tree becomes deeper when there are more
levels. To restrict this cost, we observe that the bucket combination
distribution in Equation 12 is heavy-tailed. Hence, it is feasible to
keep a small Huffman Tree in the CPU caches to allow to quickly
decode only the most common combination codes. Hence, we only
construct a Huffman tree for the most common LID combinations
within the set Cr,eq, and we set the parameter NOV to 0.9999
so that the set Cf,.q comprises 99.99% of the most common com-
binations within the CF. Figure 12 shows that the corresponding
Huffman tree’s size converges with respect to the data size. The
reason is that the probability of a given bucket combination (in
Eq. 12) is convergent with respect to the number of levels, and so
any set whose size is defined in terms of its constituent members’
cumulative probabilities is also convergent in size with respect to
the number of levels. This property ensures that the Huffman tree
does not exceed the CPU cache size as the data grows.

Decoding Table (DT). In addition to the Huffman tree, there is a
Decoding Table in main memory to allow decoding combinations
codes not in Cf 4. To ensure fast decoding speed for DT, we exploit
the property from in the last subsection that all bucket combinations
not in Cy,¢q have uniformly sized codes. Hence, we structure DT as
an array whereby index i contains the LIDs that code i corresponds
to. This guarantees decoding speed in one memory I/O. Figure 12
measures the DT size as we increase the number of levels on the x-
axis (each DT entry is eight bytes). As DT contains ~ |C| = (A+g _1)
entries, its size grows slowly with the data size and stays smaller
than 1MB even for a large LSM-tree instance with ten levels.
When point queries target data at smaller levels, the DT is more
likely to be accessed. Figure 13 varies the level whereon the target
entry resides and measures on the log-scale y-axis the average
number DT accesses per query. The reason for the increase in
access cost for entries at smaller levels is that a bucket that has at
least one LID corresponding to a smaller level is less likely to be in



the set Cfy¢q4 and hence in the cached Huffman tree. However, this
overhead eventually flattens and therefore stays modest even in the
worst-case. Overall, compared to a plain Cuckoo, which accesses on
average 1.5 buckets before finding a matching fingerprint, Chucky
always accesses two buckets and potentially also the decoding table,
leading to three memory I/Os.

Overflow Hash Table. To handle bucket overflows, we use a small
hash table to map from an overflowing bucket’s ID to the corre-
sponding fingerprints. Its size is ~ (1 - NOV) = 10~ of the CF size.
It is accessed seldom, i.e., only for infrequent bucket combinations,
and it supports access in O(1) memory I/O.

Recoding Table (RT). To find the correct code for a given com-
bination of LIDs while handling application writes, we employ a
Recoding Table, implemented as a fast static hash table. It costs
at most O(1) memory I/O to access and its size scales the same as
the Decoding Table in Figure 12. Note that the most frequent RT
entries are in the CPU caches during run-time and thus cost no
memory I/Os to access.

Space Summary. Figure 12 illustrates the CF size as we increase
the number of LSM-tree levels. All auxiliary data structures are
comparatively small and therefore not space bottlenecks.

4.5 Additional Design Considerations

This section discusses additional design considerations.

Sizing & Resizing. When Chucky reaches capacity, it needs to
be resized to accommodate new data. Since a CF needs to access
the base data in order to be resized, we exploit the fact that merge
operations into the largest level of the LSM-tree pass over the
entire dataset. We use this opportunity to also build a new and
larger instance of Chucky.

Partitioning. Since Cuckoo filter relies on the xor operator to
locate an entry’s alternative bucket, the number of buckets must be
a power of two. This can waste up to 50% of the allotted memory,
especially whenever LSM-tree’s capacity just crosses a power of
two. To keep memory better-utilized, Vacuum filter [96] proposes
partitioning a CF into multiple independent CFs, each of which is
a power of two, but where the overall number of CFs is flexible.
Each key is mapped to one of the constituent CFs using a hash
modulo operation (similarly to blocked Bloom filters). In this way,
capacity becomes adjustable by varying the number of CFs. While
Chucky does not support this yet, it is an important future step for
memory-sensitive applications.

Empty CF Slots. We represent empty fingerprint slots using a
reserved all-zero fingerprint coupled with the most frequent LID
to minimize the corresponding combination code length.

Entry Overflows. Since a CF maps multiple versions of the same
entry from different LSM-tree runs into the same pair of CF buckets,
a bucket overflow can take place if there are more than 2- S versions
of a given entry. Some filters address this problem using embedded
fingerprint counters (e.g., Counting Quotient Filter [81]). Chucky,
however, uses an additional hash table (AHT), which maps from
bucket IDs to the overflowing entries. With insertion-heavy work-
loads, AHT stays empty. Even with update-heavy workloads, AHT
stays small since LSM-tree by design limits space-amplification
and thus the average number of versions per entry (e.g., at most
% < 2 with Leveling or Lazy Leveling). We check AHT for every

full CF bucket encountered during a query or update thus adding
to them at most O(1) additional memory access.

Persistence. For each run, Chucky persists the fingerprints of all
entries in storage. During recovery, it reads only the fingerprints
from storage and thus avoids a full scan over the data. It inserts each
fingerprint along with its LID into a brand new CF at a practically
constant amortized memory I/O cost per entry. In this way, recovery
is efficient in terms of both storage and memory I/Os.

Range Reads. Similarly to mainstream KV-stores [3, 4, 38], Chucky
processes a range read by accessing the relevant key range at each
run without using the cuckoo filter. Range reads are therefore not
directly affected by this work. Note, however, that applications
with many range reads often opt for a leveled LSM-tree, whereon
Bloom filters constitute high construction overheads. Chucky can
indirectly improve performance for such applications by improving
write throughput and thus system performance as a whole.
Batch Updates. Chucky can support batch updates by (1) atomi-
cally inserting a batch into the WAL and the memtable, (2) inserting
all entries in the batch into the CF, (3) asynchronously flushing
the memtable to storage when it is full, and finally (4) atomically
removing the memtable from the read path.

5 EVALUATION

We now show experimentally that Chucky renders memory and
storage bandwidth more robust than with existing designs.
Baselines. We use our own LSM-tree implementation, designed
based on Dostoevsky [28]. We added as baselines blocked [84]
and non-blocked BFs with uniform false positive rates (FPRs) to
represent design decisions in RocksDB [38] and Cassandra [3],
respectively. We also support optimal FPRs [25]. We implemented
Chucky as described in Section 4. We support a version of Chucky
with uncompressed level IDs to loosely represent SlimDB [86].
Setup. The default setup consists of a Lazy-Leveled LSM-tree with
a 1MB buffer, a size ratio of five, and with six levels amounting
to ~ 16GB of data. Each entry is 64B. There is a 1GB block cache,
and the database block size is 4KB. Chucky uses ten bits per entry
and 5% over-provisioned space. Hence, all BF baselines are assigned
a factor of 1/0.95 more memory to equalize memory across the
baselines. Every point in the figures is an average of three experi-
mental trials. We use a uniform workload distribution to represent
worst-case performance and a Zipfian distribution to create skew
and illuminate performance properties when the most frequently
accessed data is in the block cache. To account for filter resizing
overheads, any experiment that measures write cost commences
with an LSM-tree state whereby all levels but the largest are empty.
We then fill them up with writes until a major compaction into
the largest level occurs, leading to filter resizing. In Figure 14 Parts
(A) to (D), we evaluate filter performance in isolation from other
parts of the system (e.g., memtable, storage I/Os, block cache, block
index). We focus on end-to-end performance in Parts (E) to (H).
Platform. Our machine has 32GB DDR memory, Xeon E3-1505M
v5 with four 2.8 GHz cores and 8MB L3 caches. It runs Ubuntu 18.04
LTS and is connected to a 750GB Intel Optane SSD DC P4800X.
Memory I/O Scalability. Figure 14 Part (A) compares read/write
latency with Chucky against blocked and non-blocked BFs (both
with optimal FPRs) with a uniform workload as the data grows.
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Figure 14: Chucky scales memory I/Os with data size (A) and for any LSM-tree variant (B). At the same time, Chucky’s false
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Write latency is measured by dividing the overall time spent on
filter maintenance by the number of writes issued by the application.
Read latency is measured just before a full merge operation (when
there are the most runs in the system) to highlight worst-case
performance. Non-blocked BFs exhibit the fastest growing latency
as they require multiple memory I/Os per filter across a growing
number of filters. With blocked BFs, read/write latency grows more
slowly as they require at most one memory I/O per read or write.
Chucky’s write latency also grows slowly with data as there are
more levels across which to update LIDs. Crucially, Chucky is the
only baseline that keeps read latency low with data size as each
read requires a constant number of memory I/Os.

FPR Scalability. Figure 14 Part (B) compares the FPR for Chucky
with both compressed and uncompressed LIDs to blocked BFs with
both uniform and optimal space allocation. As we increase the
data size, the FPR of Chucky with uncompressed LIDs increases
since the LIDs grow and steal bits from the fingerprints. With
uniform BFs, the FPR also grows with data size as there are more
filters across which false positives can take place. In contrast, with
optimal BFs, smaller levels are assigned exponentially lower FPRs,
and so the sum of FPRs converges to a constant that’s independent
of the number of levels. Similarly, Chucky’s FPR stays constant as
the data grows since the average LID code length converges, thus
allowing most fingerprints to stay large. The figure also includes
the FPR model of Chucky from Equation 16 to show that, here too,
it gives a reasonable approximation of the FPR in practice.

Figure 14 Part (C) shows that Chucky requires at least eight bits
per entry to work (i.e., for codes and minimum fingerprint sizes).
However, with eleven bits per entry and above Chucky offers better
memory/FPR trade-offs than all BF variants. The reason is that
BFs are known to exhibit suboptimal space use, which effectively
reduces the memory budget by a factor of In(2). Thus, Chucky

scales the FPR better with respect to memory. Part (D) show that
these results hold for any LSM-tree variant. Overall, Parts (B) to (D)
show that Chucky is at least on par with optimal BFs with respect
to scaling the FPR vs. memory budget trade-off.

Data in Storage vs. Memory. Figure 14 Parts (E) and (F) measure
end-to-end read latency with uniform and Zipfian (with parameter
1) workloads, respectively. Read latency is broken in four
components, including storage I/Os, fence pointers, memtable, and
filter search. In Part (F), relevant data is most often in storage and so
storage I/Os dominates read cost. Since our SSD is fast, however, the
BFs probes still impose a significant latency overhead that Chucky
is able to eliminate. In Part (F), on the other hand, the workload is
skewed, meaning that target data is most often in the block cache.
In this case, the BFs become a bottleneck as they must be searched
before the relevant block in the cache can be identified. Chucky
alleviates this bottleneck thus significantly improving read latency.

End-to-End Write Cost. Figure 14 Part (G) highlight’s Chucky’s
ability to keep filter construction overheads low as we increase
merge greediness (e.g., to optimize for range reads). We start with
a leveled LSM-tree with size ratio two on the left-hand side and
increase it along the x-axis. The y-axis measures end-to-end write
cost, derived by dividing the overall time spent processing these
updates by the number of updates issued by the application. As we
increase the size ratio, write cost across all baselines increases since
there is more overlap between runs at adjacent levels, and so more
data needs to be rewritten on average during each merge operation.
With relatively lower merge greediness (i.e., to the left of the figure),
Chucky and blocked Bloom filters have similar construction over-
heads. However, as we increase the size ratio, end-to-end write costs
with blocked Bloom filters increase more rapidly. The reason is that
Bloom filters must be constructed from scratch during each merge
operation, and so their construction overheads are proportional
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to the LSM-tree’s merge overheads. On the other hand, Chucky’s
performance draws nearer to the curve with disabled filters. The
reason is that it only updates an entry’s LID as an entry moves from
one level to the next, and with larger size ratios there are fewer
levels in the LSM-tree. Hence, under greedy merge policies, which
are commonly used to optimize for range reads (e.g., the default
setting in RocksDB), Chucky tangibly improves end-to-end writes.

Throughput Scalability. Figure 14 Part (H) shows how through-
put scales as we increase the data size for a workload consisting of
95% Zipfian reads and 5% Zipfian writes (modeled after Workload B
in YCSB [23]). Since writes are skewed, newer updates rapidly
replace older entries during compaction at smaller levels and so
major compaction and filter resizing do not take place. The BF base-
lines do not scale well as they issue memory I/Os across a growing
number of BFs. Chucky with uncompressed LIDs also exhibits dete-
riorating performance as its FPR grows and leads to more storage
I/Os. Chucky with compressed LIDs also exhibits deteriorating per-
formance, mostly because the of the growing cost of the binary
search across the fence pointers. However, Chucky provides better
throughput with data size than all baselines because it scales the
filter’s FPR and memory I/Os at the same time.

6 RELATED WORK

LSM-Tree Performance. With LSM-tree being adapted as a stor-
age engine across many systems (e.g., Cassandra [3], HBase [4],
AsterixDB [2], RocksDB [35, 38, 74]), there is significant interest
in optimizing LSM-tree performance [48, 70]. Most designs to date
focus on managing compaction overheads, for example by sepa-
rating values from keys [18, 68], partitioning runs into files and
merging based on maximal file intersections [7, 92, 94], keeping hot
entries in the buffer [7], making the buffer more dense [14] or con-
current [42], scheduling carefully to prevent tail latency [8, 69, 91],
using customized or dedicated hardware [1, 45, 95, 97, 101], and by
controlling delete persistence [90].

Another strain of work uses lazier compaction policies [76, 85,
86, 98, 99], which result in more runs and thus more BFs across
which false positives and memory I/Os take place. Several works
show how to implement lazier merge policies while still keeping
the FPR modest, but they still incur many memory I/Os across many
BFs [25, 28, 29, 49-51]. SlimDB [86] shows how to reduce memory
I/Os using a Cuckoo filter, but its memory footprint does not scale
well as discussed in Section 3. In contrast, we show how to scale the
FPR, memory I/Os and memory footprint at the same time (for any
merge policy including lazy ones) by replacing the Bloom filters by
a Cuckoo filter with compressed level IDs.

Fingerprint Filters. While we build Chucky on top of Cuckoo
filter [39] for its design simplicity, there exist many other finger-
print filter designs with nuanced properties. Many strive for better
cache locality by using linear probing [9, 81], biasing Cuckoo in-
sertions to one bucket [15], or by ensuring both candidate buckets
are physically close [96]. Vacuum filter offers better memory uti-
lization by allowing the filter size to not be a power of two [96].
Some designs allow to delay resizing the filter by chaining overflow
filters [22, 96] or by sacrificing fingerprint bits [81]. Xor filter sup-
ports a better FPR in exchange for higher construction time [44, 80].
Other designs prevent overflows due to duplicate insertions using

internal counters [81]. Morton filter [15] maps entries to variable
sized “slots” within larger fixed-sized “blocks” and can therefore
accommodate variable-sized entries more gracefully. Integrating
Chucky with these filters to harness their properties can make for
intriguing future work.

Range Filters. Recent LSM-tree designs use a range filter for each
run [73, 100], which can save storage I/Os for range reads but
require more memory I/Os to access and construct. Applying design
elements from Chucky to create a unified range filter over a whole
LSM-tree to reduce memory I/Os is an intriguing future direction.
Learned Fence Pointers. Recent work attempts to reduce the
fence pointers’ memory I/O overheads through learned indexes [24]
by extrapolating an entry’s location within a run based on the data’s
key distribution. Such work can complement Chucky by addressing
the fence pointers, which become the next memory I/O bottleneck
once Chucky is applied.

Learning from Negative Queries. Recent filtering approaches
have been devised to learn from commonly issued negative queries
(to non-existing keys) to reduce the false positive rate [32, 65, 78].
Integrating such techniques with Chucky is an intriguing direction.
Bloom Filters (BF). Numerous BF variants have been proposed
[16, 72, 93], which enable counting [13, 40, 89], compressibility [77],
vectoriziation [83], deletes for some but not all entries [88], efficient
hashing [33, 60] and cache locality [17, 31, 66, 67, 84]. Bloomier
filter allows to associate values with keys but is unable to compress
values and is more complicated than fingerprint filters [19, 20].
Entropy Coding. Aside to Huffman coding, there exist other meth-
ods for compressing alphabets based on the probability distribution
of the constituent symbols: Arithmetic Coding [82, 87] and Asym-
metric Numeral Systems [36]. These methods do not require the
use of auxiliary structures for encoding or decoding symbols. Har-
nessing such techniques to eliminate Chucky’s auxiliary structures
(i.e., the Huffman Tree, the Decoding Table, and the Recoding table)
is an interesting future direction.

7 CONCLUSION

This paper that shows that as the performance gap between SSDs
and memory devices is shrinking, the Bloom filters of LSM-tree
are becoming a memory access bottleneck. We therefore propose
Chucky, a filter for LSM-tree that requires fewer memory I/Os to
query and maintain than Bloom filters. Chucky uses a Cuckoo filter
in memory to map all entries to their locations within the LSM-
tree, and it compresses this location information to keep the false
positive rate low and stable. Thus, Chucky achieves the best of all
worlds: fewer memory I/Os and a low and stable false positive rate,
all for the same memory budget.
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