
Rosetta: A Robust Space-Time Optimized
Range Filter for Key-Value Stores
Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis

Niv Dayan, Wilson Qin, Stratos Idreos

Harvard University

ABSTRACT
We introduce Rosetta, a probabilistic range filter designed

specifically for LSM-tree based key-value stores. The core

intuition is that we can sacrifice filter probe time because

it is not visible in end-to-end key-value store performance,

which in turn allows us to significantly reduce the filter false

positive rate for every level of the tree.

Rosetta indexes all binary prefixes of a key using a hi-

erarchically arranged set of Bloom filters. It then converts

each range query into multiple probes, one for each non-

overlapping binary prefix. Rosetta has the ability to track

workload patterns and adopt a beneficial tuning for each

individual LSM-tree run by adjusting the number of Bloom

filters it uses and how memory is spread among them to

optimize the FPR/CPU cost balance.

We showhow to integrate Rosetta in a full system, RocksDB,

and we demonstrate that it brings as much as a 40x improve-

ment compared to default RocksDB and 2-5x improvement

compared to state-of-the-art range filters in a variety of work-

loads and across different levels of the memory hierarchy

(memory, SSD, hard disk). We also show that, unlike state-

of-the-art filters, Rosetta brings a net benefit in RocksDB’s

overall performance, i.e., it improves range queries without

losing any performance for point queries.

ACM Reference Format:
Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis and Niv Dayan,

Wilson Qin, Stratos Idreos. 2020. Rosetta: A Robust Space-Time

Optimized Range Filter for Key-Value Stores. In Proceedings of the

2020 ACM SIGMOD International Conference on Management of Data

(SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3318464.3389731

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389731

ra
ng

e
si

ze
 (l

en
gt

h
in

 d
om

ai
n)

Memory
too high
to use a

filter

0

32

64

memory (bits/key) 2610 13

Analytical system is best
(e.g. column store)

LSM-tree KV-store with
Rosetta is best

LSM-tree KV-store with
SuRF is best

Figure 1: Rosetta brings new performance properties
improving on and complementing existing designs.

1 INTRODUCTION
Log Structured Merge (LSM)-Based Key-value Stores.
LSM-based key-value stores in industry [2, 4, 5, 15, 30, 36,

43, 53, 55, 71, 73] increasingly serve as the backbone of ap-

plications across the areas of social media [6, 12], stream

and log processing [14, 16], file structures [47, 65], flash

memory firmware [26, 69], and databases for geo-spatial

coordinates [3], time-series [50, 51] and graphs [32, 52].

The core data structure, LSM-tree [58] allows systems to

target write-optimization while also providing very good

point read performance when it is coupled with Bloom fil-

ters. Numerous proposals for variations on LSM-tree seek

to strike different balances for the intrinsic read-write trade-

off [7], demonstrated in a multitude of academic systems

[8, 11, 24, 25, 27, 28, 42, 45–47, 54, 56, 61, 62, 64, 67, 72].

Filtering on LSM-trees. As LSM-based key-value stores

need to support fast writes, the ingested data is inserted into

an in-memory buffer. When the buffer grows beyond a pre-

determined threshold, it is flushed to disk and periodically

merged with the old data. This process repeats recursively,

effectively creating a multi-level tree structure where ev-

ery subsequent level contains older data. Every level may

contain one or more runs (merged data) depending on how

often merges happen. The size ratio (i.e., how much bigger

every level is compared to the previous one) defines how

deep and wide the tree structure grows [48], and also affects

the frequency of merging new data with old data. As the ca-

pacity of levels increases exponentially, the number of levels

is logarithmic with respect to the number of times the buffer

has been flushed. To support efficient point reads, LSM-trees

https://doi.org/10.1145/3318464.3389731
https://doi.org/10.1145/3318464.3389731

use in-memory Bloom filters to determine key membership

within each persistent run. Each disk page of every run is

covered by fence pointers in-memory (with min-max infor-

mation). Collectively Bloom filters and fence pointers help

reduce the cost of point queries to at most one I/O per run

by sacrificing some memory and CPU cost [45].

Range Queries Are Hard. Range queries are increasingly
important to modern applications, as social web application

conversations [18], distributed key-value storage replica-

tion [63], statistics aggregation for time series workloads [49],

and even SQL table accesses as tablename prefixed key re-

quests [17, 35] are all use cases that derive richer functional-

ity from building atop of key-value range queries.While LSM-

based key-value stores support efficient writes and point

queries, they suffer with range queries [25, 27, 28, 34, 57].

This is because we cannot rule out reading any data blocks

of the target key range across all levels of the tree. Range

queries can be long or short based on selectivity. The I/O cost

of a long range query emanates mainly from accessing the

last level of the tree because this level is exponentially larger

than the rest, whereas the I/O cost of short range queries is

(almost) equally distributed across all levels.

State of the Art. Fence pointers can rule out disk blocks

with contents that fall outside the target key range. However,

once the qualifying data blocks are narrowed down, the

queried range within a data block may be empty – a concern

especially for short range queries. To improve range queries,

modern key-value stores utilize Prefix Bloom filters [33]

that hash prefixes of a predefined length of each key within

Bloom filters [36]. Those prefixes can be used to rule out

large ranges of data that are empty. While this is a major

step forward, a crucial restriction is that this works only for

range queries that can be expressed as fixed-prefix queries.

The state of the art is Succinct Range Filter (SuRF) [74]

that can filter arbitrary range queries by utilizing a compact

trie-like data structure. SuRF encodes a trie of n nodes with

maximum fanout of 256. The trie is culled at a certain prefix

length. The basic version of SuRF stores minimum-length

prefixes such that all keys can be uniquely represented and

identified. Other SuRF variants store additional information

such as hash bits of the keys (SuRF-Hash) or extra bits of the

key suffixes (SuRF-Real).

Problem 1: Short and Medium Range Queries are Sig-
nificantly Sub-Optimal. Although trie-culling in SuRF is

effective for long range queries, it is not very effective on

short ranges as (i) short range queries have a high probability

of being empty and (ii) the culled prefixes may not help as

the keys differ mostly by the least significant bits. Similarly,

fence pointers or Prefix Bloom filters cannot help with short

range queries unless the data is extremely sparse. On the

other hand, if a workload is dominated by (very) long range

queries, then a write-optimized multi-level key-value store

is far from optimal regardless of the filter used: instead, a

scan-optimized columnar-like system is appropriate [1].

Problem 2: Lack of Support for Workloads With Key-
Query Correlation or Skew. Unlike hash-based filters

1

such as Bloom and Cuckoo filters [10, 37], both Prefix Bloom

filters and SuRF are dependent on the distribution of keys

and queries, and as such, are affected by certain properties of

the distribution. Specifically, a major source of false positives

in these filters is when a queried key does not exist but shares

the prefix with an existing one. Such workloads are common

in applications that care about the local properties of data. For

example, a common use case of an e-commerce application

is to find the next order id corresponding to a given order

id. This translates to querying the lexicographically smallest

key that is greater than the current key. Other examples

include time-series applications that often compare events

occurring within a short time range for temporal analysis

or geo-spatial applications that deal with points-of-interest

data which are queried to search a local neighborhood. In

fact, the RocksDB API [36] accesses keys through an iterator

that steps through the keys in lexicographical order.

Similarly, existing filters do not take advantage of skew,

for instance when key distributions are sparse and target

ranges contain empty gaps in key range.

Overall Problem: Sub-Optimal Performance forDiverse
Workloads and Point Queries. Overall, existing filters in

key-value stores suffer in FPR performance due to variation

of one or more of the following parameters – range sizes, key

distributions, query distributions, and key types. Another

critical problem is that neither indexing prefixes with Prefix

Bloom filters nor using SuRF (even SuRF-Hash) can help

(much) with point queries. In fact, point query performance

degrades significantly with these filters. Thus, for workloads

that contain both point queries and range queries, an LSM-

tree based key-value store with such filters needs to either

maintain a separate Bloom filter per run to index full keys

or suffer a high false positive rate for point queries.

Our Intuition:WeCanAfford toGiveUpCPU. All state-
of-the-art filters such as, Bloom filters, Quotient filters [9],

and SuRF trade among the following to gain in end-to-end

performance in terms of data access costs.

(1) Memory cost for storing the filter

(2) Probe cost, i.e., the time needed to query the filter

(3) False positive rate, which reflects how many empty

queries are not detected by the filter, thus leading to

unnecessary storage I/O

These tradeoffs make sense because an evolving hardware

trend is that contemporary speed of CPU processing facil-

itates fast in-memory computations in a matter of tens of

1
SuRF-Hash uses hashes to improve point-queries, not for range filtering.

nanoseconds, whereas even the fastest SSD disks take tens

of microseconds to fetch data. In this paper, we use an ad-

ditional insight which we also demonstrate experimentally

later on. When a range filter is properly integrated into a full

system, the probe cost of the filter is, in fact, a small portion

of the overall key-value store system CPU cost (less than 5%).

This is because of additional CPU overhead emanating from

range queries traversing iterators (requiring a series of fence

pointer comparisons) for each relevant run, and resulting

deserialization costs for maintaining the system block cache

for both metadata (filters and fence pointers) and data. Thus,

since we target specifically LSM-tree based key-value stores,

we have even more leeway to optimize the range filter design

with respect to both probe cost (CPU) we can afford and FPR

we can achieve.

Rosetta.We introduce a new filter, termed Rosetta (A Robust

Space-Time Optimized Range Filter for Key-Value Stores),

which allows for efficient and robust range and point queries

in workloads where state-of-the-art filters suffer. Rosetta is

designed with the CPU/FPR tradeoff from the ground up and

inherently sacrifices filter probe cost to improve on FPR. The

core of the new design is in translating range queries into

prefix queries, which can then be turned into point queries.

Rosetta stores all prefixes for each key in a series of Bloom

filters organized at different levels. For every key, each prefix

is hashed into the Bloom filter belonging to the same level

as that of the prefix length. For example, when the key 6

(which corresponds to 0110) is inserted to Rosetta, all possible

prefixes∅, 0, 01, 011, and 0110 are inserted to the first, second,

third, fourth, and fifth Bloom filter respectively. A range

query of sizeR (i.e., with the form [A,A+R−1]) is decomposed

into at most 2 log
2
(R) dyadic ranges (i.e., ranges of size 2r that

share the same binary prefix for some length r). In essence,

this design builds a series of implicit Segment Trees on top

of the Bloom filters. Due to the multiple probes required

(for every prefix) Rosetta has a high probe cost. Rosetta also

adaptively auto-tunes to sacrifice as much probe cost as

possible in favor of FPR by monitoring workloads’ patterns

and deciding optimal bit allocation across Bloom filters (by

flattening the implicit Segment Tree when possible).

Our contributions are as follows:

• We introduce a new range filter design for key-value

storeswhich utilizes auxiliary CPU resources to achieve

a low false positive rate. The core design is about stor-

ing all prefixes of keys in a series of Bloom filters

organized in an implicit Segment Tree structure.

• We show that Rosetta approaches the optimal mem-

ory lower bound for any false positive rate within a

constant factor.

• We show that Rosetta can be configured in versatile

ways to balance the trade-off between filter probe cost,

memory cost, and false positive rate. This is done by

controlling the number of Bloom filters being used as

well as the memory used at each Bloom filter.

• We show how to integrate Rosetta in a full system,

RocksDB and the effect of several design factors that

affect full system performance including the number

of iterators per query, deserialization costs, seek cost,

and SST file size.

• Wedemonstrate that compared to RocksDB (with fence

pointers and Prefix Bloom filters), Rosetta brings an

up to 40x improvement for short and medium range

queries, while compared to RocksDBwith SuRF, Rosetta

improves by a factor of 2-5x. These improvements are

observed across diverse workloads (uniform, corre-

lated, skewed) and across different memory hierarchy

layers (memory, SSD, hard disk).

• As components of end-to-end performance, we show

the fundamental tradeoffs between filter construction

latency, filter probe latency, and disk access latency for

a given memory budget. We also relate these costs to

CPU and I/O of the whole key-value store and demon-

strate that by utilizing more CPU in accessing filters,

Rosetta significantly improves the overall key-value

store performance compared to state-of-the-art filters.

• We also demonstrate that Rosetta brings a net benefit

in RocksDB by not hurting point query performance.

Rosetta can process worst case point queries as well as

point-query optimized RocksDB or better (while Prefix

Bloom filters and SuRF incur a 60% and 40% overhead

for point queries, respectively).

• We also show the holistic positioning of Rosetta com-

pared to existing methods so applications can decide

when to use which filter: Figure 1 shows this sum-

mary. Given the same memory budget, Rosetta is ro-

bust across workloads and beneficial with short range

queries. SuRF is beneficial for medium range queries

while once query range gets bigger a key-value store

is not beneficial anymore.

2 ROSETTA
Rosetta in an LSM-tree KV-Store. A Rosetta instance is

created for every immutable run of an LSM-tree. For every

run of the tree, a point or range query, first probes the corre-

sponding Rosetta filter for this run, and only tries to access

the run on disk if Rosetta returns a positive. As with Bloom

filters and fence pointers in LSM-trees, every time there is a

merge operation, the Rosetta filters of the source runs are

dropped and a new Rosetta instance is created for the new

run. We discuss in detail the integration of Rosetta in a full

key-value store in Section 4. The terms used in the following

discussion can be referred to Table 1.

insert(3, 6, 7, 8, 9, 11)

insert(0011, 0110, 0111, 1000, 1001, 1011)

0

00

0

0

1

3

1

01

1

1

3

6 7

10

0011

2

4 5

8 9 11

b
a
s
e
 2

 r
e
p

re
s
e
n
ta

ti
o

n

BF 1

BF 2

BF 3

BF 4 0110 0111 1000 1001 1011

001 011 100 101

b
a
s
e
 1

0
 r

e
p

re
s
e
n
ta

ti
o

n

Figure 2: Rosetta indexes all prefixes of each key.

Term Definition
n Number of keys

R Maximum range query size

M Memory budget

Bi Bloom filter corresponding to length-i prefix
ϵi False positive rate of Bi
Mi Memory allocated for Bi
ϵ Resulting false positive rate for a prefix query

after considering recursive probes

ϕ General reference of the FPR of a Bloom filter

at Rosetta

Table 1: Terms used.

2.1 Constructing Rosetta for
LSM-tree Runs

For every run in an LSM-tree, a Rosetta exists which contains

information about all the entries within the run. A Rosetta

is created either when the in-memory buffer is flushed to

disk or when a new run is created because two or more runs

of older data are merged into a new one. Thus, insertion

in Rosetta is done once all the keys which are going to be

indexed by this Rosetta instance are known. All keys within

the run are broken down into variable-length binary prefixes,

thereby generating L distinct prefixes for each key of length

L bits. Each i-bit prefix is inserted into the ith Bloom filter of

Rosetta. The insertion procedure is described in Algorithm 1,

and an example is shown in Figure 2. Let us take inserting 3

(corresponding to 0011) as an example. As shown in Figure 2

(the red numbers), we insert prefixes 0, 00, 001 and 0011

into B1, B2, B3 and B4 respectively. Here insertion means

that we index every prefix in the Bloom filter by hashing it

and setting the corresponding bits in the Bloom filter. The

prefix itself is not stored. Figure 3 shows the final state of

Rosetta after inserting all keys in a run (keys 3, 6, 7, 8, 9, 11

in our example). We do not need to take care of dynamic

updates to the data set (e.g., a new key arriving with a bigger

length) since each separate instance of Rosetta is created for

an immutable run at a time. In addition, given that every run

of the LSM-tree might have a different set of keys, different

Algorithm 1: Insert
1 Function Insert(K):

/* K is the key to be inserted. */

2 L ← number of bits in a key

3 B ← L Bloom filters

4 for i ∈ {L, . . . , 1} do
5 Bi .Insert(K)

6 K ← ⌊K/2⌋

Rosetta instances across the tree can have a different number

of Bloom filters.

Implicit SegmentTree inRosetta. Rosetta effectively forms

an implicit Segment Tree [68] (as shown in Figure 3) which is

used to translate range queries into prefix queries. Segment

Trees are full binary trees and thus perfectly described by

their size, so there is no need to store information about the

position of the left and right children of each node.

2.2 Range and Point Queries with Rosetta
2.2.1 Range Lookups. We now illustrate how a range lookup

is executed in Rosetta. For every run in an LSM-tree, we first

probe the respective Rosetta instance. Algorithm 2 shows

the steps in detail and Figure 3 presents an example.

First, the target key range is decomposed into dyadic in-

tervals. For each dyadic interval, there is a sub-tree within

Rosetta where all keyswithin that interval have been indexed.

For every dyadic interval, we first search for the existence of

the prefix that covers all keys within that interval. This marks

the root of the sub-tree for that interval. In the example of

Figure 3, the range query range(8, 12) breaks down into

two dyadic ranges: [8, 11] (the red shaded area) and [12, 12]
(the green shaded area). We first probe the Bloom filter re-

siding at the root level of the sub-tree. The Segment Tree is

implicit, so the length of the prefix determines which Bloom

filter to probe. For example, the prefix 10∗ contains every

key in [8, 11] and nothing more (i.e., 1000, 1001, 1010, 1011),
so for the range [8, 11] we will probe 10 from the second

Bloom filter. If this probe returns a negative, we continue in

the same way for the next dyadic range. If the probe from

every dyadic range returns negative, the range of the query

is empty. As such, in the example of Figure 3, we will probe

the second Bloom filter for the existence of 10 and, if that

returns negative, we will probe the fourth Bloom filter for the

existence of 1100. If both probes return negative, the range

is empty (when inserting a key we insert all of its prefixes to

the corresponding Bloom filter, so for example if there was

a key in the range [8, 11], we would have inserted 10 to the

second Bloom filter).

If at least one prefix in the target range returns positive,

then Rosetta initiates the process of doubting. We probe

range(8, 12) range(1000, 1100)

search(100, 101)
search(110)

search(1000, 1001, 1010, 1011)
search(1100)

search(10, 11)

BF 1

BF 2

BF 3

BF 4
0 1

0 0

1

1

1

1

1

0

0 0

split point

0 0 11

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 3: Rosetta utilizes recursive prefix probing.

Bloom filters residing at deeper levels of the sub-tree and in

turn, determine the existence of all possible prefixes within

the particular dyadic interval. In the example of Figure 3,

when querying the range [8, 11], if the probe for prefix 10∗ is
positive, we further probe for 100∗ and 101∗ the third Bloom

filter. If both of these probes are negative, we can mark the

sub-range as empty, since any key with prefix 10∗ will either

have the prefix 100∗ or the prefix 101∗.

In general, all Bloom filters at the subsequent levels of

Rosetta are recursively probed to determine the existence

of intermediate prefixes by traversing the left and right sub-

trees in a pre-order manner. The left sub-tree corresponds to

the current prefix with 0 appended, while the right sub-tree

corresponds to the current prefix with 1 appended. Recursing

within a sub-tree terminates if either (a) a Bloom filter probe

corresponding to a left-leaf in the sub-tree returns positive

which marks the whole subrange as positive, or (b) case (a)

does not happen while any Bloom filter probe corresponding

to a right node returns negative in which case the whole

sub-range is marked as negative.

In the event that the range is found to be a positive, there

is still a chance for Rosetta to reduce I/O by “tightening" the

effective range to touch on storage. That is, if Rosetta finds

that intervals at the edge of the requested range are empty,

it will proceed to do I/O only for the narrower, effective key

range which is determined as positive.

2.2.2 Point Lookups. The last level of Rosetta indexes the
whole prefix of every key in the LSM-tree run that it repre-

sents. This is equivalent to indexing the whole key in a Bloom

filter which is how traditional Bloom filters are used in the

default design of LSM-trees to protect point queries from

performing unnecessary disk access. In this way, Rosetta can

answer point queries in exactly the same way as point-query

optimized LSM-trees: For every run of the LSM-tree, a point

query only checks the last level of Rosetta for this run, and

only tries to access disk if Rosetta returns a positive.

2.2.3 Probe Cost vs FPR. The basic Rosetta design described

above intuitively sacrifices CPU cost during probe time to

improve on FPR. This is because of the choice to index all

prefixes of keys and subsequently recursively probe those

prefixes at query time. In the next two subsections, we show

Algorithm 2: Range Query
1 Function RangeQuery(Low,Hiдh, P = 0, l = 1):

/* [Low,Hiдh]: the query range; */

/* P: the prefix. */

2 if P > Hiдh or P + 2L−l+1 − 1 < Low then
/* P is not contained in the range */

3 return false

4 if P ≥ Low and P + 2L−l+1 − 1 ≤ Hiдh then
/* P is contained in the range */

5 return Doubt(P , l)

6 if RangeQuery(Low,Hiдh, P , l + 1) then
7 return true

8 return RangeQuery(Low,Hiдh, P + 2L−l , l + 1)

9 Function Doubt(P , l):
10 if ¬Bl .PointQuery(P) then
11 return false

12 if l > L then
13 return true

14 if Doubt(P , l + 1) then
15 return true

16 return Doubt(P + 2L−l , l + 1)

how to further optimize FPR through memory allocation and

further CPU sacrifices during probe time.

2.3 FPR Optimization Through
Memory Allocation

A natural question arises: how much memory should we

devote to each Bloom filter in a Rosetta instance for a given

LSM-tree run? Alternatively, what is the false positive rate

ϵi that we should choose for the filters in order to minimize

the false positive rate for a given memory budget? Equally

distributing the memory budget among all Bloom filters over-

looks the different utilities of the Bloom filters at different

Rosetta levels. In this section, we discuss this design issue.

A First-Cut Solution: FPR Equlibrium Across Nodes.
Our first-cut solution is to achieve an equilibrium, such that

an equal FPR ϵ is achieved for any segment tree node u by

considering the filters both at u and u’s descendant nodes.
As we will explain later in Section 3, this strategy gives

very good theoretical interpretation in terms of memory

usage– it achieves a 1.44-approximation optimal memory

usage. The detailed calculation for the FPR ϕ of the filter

at u’s level is as follows. By the aforementioned objective

equilibrium, we suppose that a node u’s children all have

false positive rate ϵ , after taking the filters of their respective
descendant nodes into account. If we consider the filters of u
and its descendants all together, an ultimate false positive is

achieved by either 1) the filter at u returns a positive, and u’s
left sub-tree returns a positive. This case leads to a positive

rateϕ ·ϵ ; or 2) the filter atu returns a positive,u’s left sub-tree
returns a negative while u’ right sub-tree returns a positive.
This case gives us a positive rate ϕ · (1 − ϵ) · ϵ . Putting these

two cases together gives the following equation.

ϕ · ϵ + ϕ · (1 − ϵ) · ϵ = ϵ ⇒ϕ · (2 − ϵ) = 1⇒ ϕ =
1

2 − ϵ

This means that we may set each non-terminal node’s false

positive rate to 1/(2 − ϵ).

Optimized Allocation ofMemory Across Levels. Based
on the aforementioned idea, there are still many Bloom filters

that are treated equally (except for the last level). However,

we find that in general, the Bloom filters at shorter prefix

Rosetta levels are probed less than deeper levels. Intuitively,

we should set lower FPRs for Bloom filters that are probed

more frequently. To formalize this idea, we analyze the fre-

quency of a segment tree node u being accessed (i.e., the

Bloom filter at node u is probed), if we issue every query of

size R once. Our analytical results are as follows.

Let level-r of Rosetta be the level which is r level higher
than the leaf level. Then, the frequency of a level-r node

being accessed, д(r), is expressed as,

д(r) =
∑

0≤c≤⌊logR ⌋−r

д(r + c,R − 1) (1)

where, д(x ,R − 1) =

1, x ∈ [0, ⌊logR⌋)
R−2x+1

2
x , x = ⌊logR⌋

0, x > ⌊logR⌋

(2)

To incorporate the idea of achieving lower FPRs for less

frequently accessed filters, we aim to minimize the objective

of

∑
0≤r ≤⌊logR ⌋ д(r) · ϵr (where ϵr is the FPR of the level-

r Bloom filter of Rosetta), subject to the overall memory

budgetM . LetMr be the number of bits assigned to the level-

r Bloom filter. Then the following expression minimizes the

aforementioned function.

Mr = −
n

(ln 2)2
ln

C

д(r)
(3)

where, C =
©«

∏
0≤r ≤⌊logR ⌋

д(r)
ª®¬

1

⌊logR⌋

·

(
e−

M
n

) (ln 2)2
⌊logR⌋

(4)

The derivation of the Equation 3 is as follows. First, we

transform the objective function
2
:∑

0≤r ≤⌊logR ⌋

д(r) · ϵr =
∑

0≤r ≤⌊logR ⌋

д(r) · e−
Mr
n ·(ln 2)

2

(5)

2
For ease of analysis, we assume each Bloom filter at level in [0, ⌊logR ⌋]
has n unique keys.

Then, by the AM-GM inequality
3
and let h = 1 + ⌊logR⌋,

we have,

∑
0≤r ≤⌊logR ⌋

д(r)e−
Mr
n ·(ln 2)

2

≥ h

(∏
0≤r ≤h−1

д(r)e−
Mr
n ·(ln 2)

2

) 1

h

⇒
∑

0≤r ≤⌊logR ⌋

д(r)e−
Mr
n ·(ln 2)

2

≥ h

(∏
0≤r ≤h−1

д(r)

) 1

h (
e−

M
n ·(ln 2)

2

) 1

h

⇒
∑

0≤r ≤⌊logR ⌋

д(r) · e−
Mr
n ·(ln 2)

2

≥ (1 + ⌊logR⌋)·

©«
∏

0≤r ≤⌊logR ⌋

д(r)
ª®¬

1

⌊logR⌋

·

(
e−

M
n

) (ln 2)2
⌊logR⌋

(6)

Given parameters R, r ,M , n, the last value in Equation 6 is

a constant. Hence, the minimum achieves when the equality

condition of the arithmetic-mean-inequality holds, i.e.,

д(r) · e−
Mr
n ·(ln 2)

2

= C (7)

where, C =
(∏ ⌊logR ⌋

0≤r д(r)
) 1

⌊logR⌋
·

(
e−

M
n

) (ln 2)2
⌊logR⌋

.

Transforming Equation 7 gives the optimal memory bits

allocation as shown in Equation 3. WhenMr solved gives a

negative value, we reset Mr = 0 and rescale the other Mr ′

for r ′ , r to maintain the sum of memory bits to beM .

2.4 FPR Optimization Through Further
Probe Time Sacrifice

Aswewill show in Section 5, filter probe time is a tiny portion

of overall query time in a key-value store. This means that

we can explore opportunities to further sacrifice filter probe

time if that might help us to further improve on FPR. In this

section, we discuss such an optimization.

The core intuition of the optimization in this section is

that the multiple levels of Rosetta require valuable bits. Ef-

fectively, all levels but the last one in each Rosetta instance

help primarily with probe time as their utility is to prune the

parts of the range we are going to query for at the last level

of Rosetta.

The fewer such ranges the less the probe cost of the filter.

At the same time, though, these bits at the top levels of

Rosetta could be used to store prefixes with fewer conflicts

at the bottom level, improving FPR. This gives a balance

between FPR and probe cost. We present two new strategies

based on this observation.

(i) Single-level filter for small ranges. This is an extreme

design option of using only a single level Rosetta. This means

3x1 + x2 + . . . + xh ≥ 1

h ·
∏

1≤i≤h xi
1

h , For xi ≥ 0, the equality holds

when all xi are equal.

that all of Rosetta is stored in a single Bloom filter maximiz-

ing the utility of the available memory budget but increasing

probe time as all ranges need to be queried. Thus the probe

time is linear to the range size.

(ii) Variable-level filter for large ranges. An alternative ap-

proach to the extreme single-level design is to selectively

push more bits at lower levels (e.g., more aggressively push-

ing bits at lower levels to the point where a level might be

empty). The amount of bits chosen determines the CPU/FPR

balance. We achieve this by associating a Bloom filter with a

weight as the sum of its probe frequency and all the probe-

frequencies of its above Bloom filters. The new weight can

be expressed as follows.

w(Bi) =
∑

i≤r ≤⌊logR ⌋

д(i)

Then we apply Equation 3 to compute bits-allocation based

on the newweights (i.e., by replacingд(r)withw(Br)). In this
way, we shift more bits from upper levels to bottom levels.

Also, whenMr solved by Equation 3 gives a negative value,

we set Mr = 0 and update w(Bi) by adding up its current

weight with all the weights of its above Bloom filters.

To evaluate the FPR performance and probe time of the

original mechanism (by Equation 3), single-level filter, and

new variable-level filter, we perform a test on 10 million

keys with a Rosetta with 10 bits-per-key. Figure 4 varies a

range size from 2 to 512 (x-axis). Each bar represents FPR

(right figure) or probe cost (left figure). While the single-level

filter has the best FPR, its probe cost is significantly higher

than the other two methods starting from a range size of 32.

This range size is also the turning point where the FPR per-

formance of the new variable-level filter starts to overtake

the original mechanism, while achieving a more reasonable

probe cost compared with the single-level filter. This obser-

vation motivates a hybrid mechanism of both single-level

and variable-level filters depending on the workload: for

workloads where small ranges (i.e., at most size 16) are dom-

inating, we employ the single-level filter, whereas in other

cases, we build Rosetta with the mediated filter.

Finally, note that our solution to distribute the bits across

the different Rosetta levels based on actual runtime filter use,

requires workload knowledge. This is knowledge attainable

by extending the native statistics already captured in a key-

value store. Given that a Rosetta instance is created for every

run, we keep counters and histograms for query ranges,

invoked Rosetta instances and the corresponding hit rates on

the underlying runs. More specifically we record the query

ranges seen and also record the utilization and performance

of each Bloom filter in the invoked Rosetta instances. At

compaction time, we reconcile these statistics and create

the post-compaction Rosetta instances using this workload

2 4 8 16 32 64 256

0
10

20
30

40
50 Variable−level

Original
Single−level

Pr
ob

e
C

os
t (

m
ic

ro
se

cs
)

Range
2 4 8 16 32 64 256

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Variable−level
Original
Single−level

FP
R

Range
2 4 8 16 32 64128 256512 2 4 8 16 32 64128 256512

Figure 4: Depending on range size, a different bits-
allocation mechanism can be used.

information to extract the weights and to decide on single

vs variable levels for each run.

3 THEORETICAL INSIGHTS
We show that Rosetta is very close to be space optimal, and

the query time is moderate.

3.1 Space Complexity is Near-optimal
It has been shown in [44] that in order to achieve a FPR of ϵ
for any range query of size R, any data structure should use

at least n log
(
R1−O (ϵ)

ϵ

)
−O(n) of bits, where n is the number

of keys.

For memory allocation in Rosetta, we have introduced the

first-cut solution and the optimized approaches. The first-

cut solution is relevant to the given FPR guarantee ϵ , while
the spirit of the optimized approaches consider the utilities

of each filter thereby being workload aware. As the space

lower bound is given regarding ϵ , our discussion of the space

complexity will focus on the first-cut solution, which is with

regard to ϵ directly.

The first-cut solution of memory allocation gives an ϵ FPR
for the last level but

1

2−ϵ FPR for the other levels. Since each

level in Rosetta may have at most n nodes, we get that the

total memory required is:

log e · (n log(1/ϵ) + n log(u) log(2 − ϵ)) ≈ 1.44 · n log (u/ϵ),
where u is the size of the key space. If we have a bound R
on the maximum size of range queries, we may disregard

some levels of the Rosetta, which gives us a memory usage

of 1.44 · n log (R/ϵ). This means Rosetta is very close to the

aforementioned theoretical lower bound.

3.2 Computational Complexity is Low
Construction. Given that each run in an LSM-tree contains

sorted keys, we can avoid inserting common prefixes of

consecutive keys, which means that we only insert unique

prefixes to the Bloom filters. Thus, the number of insertions

to Bloom filters that we perform is equal to the size of a

binary trie containing the keys, which is upper bounded by

n ·L. This complexity is very close to the lower bound, which

barely reads every bit of the keys.

Querying. The query time complexity is proportional to

the maximum number of prefixes that we break the range

down into. In a Segment Tree that number is equal to 2L [29].

Similarly, a range of size R will need up to 2 log
2
(R) queries

since it can break into at most that many prefixes. In the

worst-case scenario, the number of probes needed for a range

query is equal to the number of Segment Tree nodes under

the sub-trees of every dyadic range, which isO(R). However,
computation will end if there are no positive probes that

we can recurse over any longer. Our analysis shows that in

expectation, the number of probes is typically much less than

the worst case. We divide the analysis into multiple cases.

Uniform Bits-Allocation. Consider a Rosetta with each of

its Bloom filters of FPR equal to p = 0.5 + θ ,θ , 0, |θ | < 0.5.
We analytically show that the expected runtime of a query

is less thanO(
logR
θ 2
) for an empty range. For an empty range,

the process of doubting ends once either no positives are

remaining, or the level of recursion reaches the last level

of Rosetta. Let E be the expected number of Bloom filter

probes under the condition that the level of recursion never

reaches the last level (i.e., level L), and F the expected num-

ber of probes under the condition that it does. By linearity

of expectation, we have that the total expected number of

probes is equal to E+F . To upper bound E+F , we consider a
Rosetta containing an infinite number of Bloom filters where

each has an FPR equal to p. Querying with such an “infinite”

Rosetta is at least as costly as querying with the original

Rosetta. To see this, if a query never reaches level L or any

probe in level L always returns a negative, then probe cost

with either Rosetta will be the same. However, if a query

reaches level L and a probe in this level returns a positive,

then with the original Rosetta the query stops immediately

by returning positive, whereas with the infinite Rosetta the

probe can further recurse to deeper levels, thereby incurring

more probe cost. Next, we analyze the probe cost within each

dyadic range in the infinite Rosetta, and we reuse the term

E defined previously for ease of presentation.

Let Ei be the expected number of Bloom filter probes, and

has encountered exactly i positives, which means that by

linearity of expectation, E =
∑∞

i=0 Ei . Each positive probe

either recurses into two negative probes (which then recurse

no further), two positive probes (both of which recurse), or

one positive (which recurses) and one negative (which does

not). Therefore the probes that we perform form a binary

tree whose leaves are the negative probes, and every other

node is a positive probe. From this property, we have that

there are i + 1 negatives, and as such 2i + 1 probes in total.

Then, we have that Ei = Pi (2i+1), where Pi is the probability
that the number of positive probes is equal to i . Let Ci be

the ith Catalan number, which is equal to the number of

unique binary trees with 2i + 1 nodes [66]. We have that

Pi = Ci · p
i · (1 − p)i+1 since for each unique binary tree,

the probability of Rosetta making the probes exactly in the

shape of that tree is equal to pi · (1 − p)i+1, since a positive
occurs with probability p and a negative with probability

(1 − p). By the approximation Ci ≃
4
i

i3/2
√
π [66] we have that

Pi ≃
(1 − 4θ 2)i

i
√
iπ

· (1 − p) ≤
(1 − 4θ 2)i

i
√
iπ

Then, Ei = Pi (2i + 1) ≤
(1−4θ 2)i (2i+1)

i
√
iπ

. We have that,

E − E0 =
∞∑
i=1

Ei ≤
∞∑
i=1

(1 − 4θ 2)i (2i + 1)

i
√
iπ

≤

∞∑
i=1

3i(1 − 4θ 2)i

i
√
iπ

≤

∞∑
i=1

3(1 − 4θ 2)i
√
π

≤
3

4θ 2
√
π

Finally, since E0 is a constant and we have at most 2 logR
dyadic ranges, we conclude that the probe cost to be at most

O(
logR
θ 2
), with the infinite Rosetta. This also upper bounds

the probe cost of the original Rosetta, and thus the overall

expected complexity of a range query is less than O(
logR
θ 2
).

Non-Uniform Bits-Allocation.We can relax the assump-

tion by allowing unequal FPRs among the Bloom filters. We

denote the FPR of level-i Bloom filter by pi . Let pmax =

max{pi } and pmin = min{pi }. Similar to the above deriva-

tion, we have

Pi ≤ Cip
i
max (1 − pmin)

i+1

≃
4
i

i3/2
√
π
(pmax (1 − pmin))

i · (1 − pmin) (8)

To give the same complexity analysis as in the case where

all pi are equal, it is sufficient to let pmax (1 − pmin) <
1

4
.

Let θ ′ =
√

1

4
− pmax (1 − pmin). Following our complexity

analysis, we show that the expected probe time is O(
logR
θ ′2
).

4 INTEGRATING RANGE FILTERS TO AN
LSM-BASED KEY-VALUE STORE

Standarization of Filters inRocksDB. We integrated Rosetta

into RocksDB v6.3.6, a widely used LSM-tree based key-value

store. We constructed a master filter template that exposes

the API of the fundamental filter functionalities – populating

the filter, querying the filter about the existence of one or

more keys (point lookups and range scans), and serializing

and deserializing the filter contents and its structure.

Implementing Full Filters. Each run of the LSM-tree is

physically stored as one or more SST files - stands for Static

Sorted Table and is effectively a contiguously stored set of

ordered key-value pairs. A Rosetta instance is created for

every SST file
4
. Filters are serialized before they are persisted

4
Using block-based filters is also deprecated in RocksDB.

on disk
5
. During background compactions, a new filter in-

stance is built for the merged content of the new SST, while

the filter instances for the old SSTs are destroyed.

Minimizing Iterator-OverheadThroughConfiguration.
For each range query, RocksDB creates a hierarchy of itera-

tors. The number of iterators is equal to the number of SST

files and thus the number of filter instances. Each such itera-

tor is called a two-level iterator as it further maintains two

child iterators to iterate over the data and non-data (filters

and fence pointers) blocks (in the event that the correspond-

ing filter returns a positive).

We found that a big part of the CPU cost of range queries

in RocksDB [13] is due to the maintenance and consolidation

of data coming from the hierarchical iterators. Unlike other

levels, L0 in RocksDB comprises of more than one run flushed

from the in-memory buffer. This design decision helps with

writes in the key-value store. But at the same time, it means

that we need to create multiple iterators for L0 causing a

big CPU-overhead for empty queries (queries that do not

move data). To reduce this overhead, we bound the number

of L0 files (in our experiments we use 3 runs at L0
6
). Setting

the number of L0 iterators too low may throttle compaction

jobs and create long queues of pending files to be compacted.

Hence, this value needs to be tuned based on the data size.We

also restrict the growth of L0 thereby enforcing compaction

and spawning most iterators only per level (and not per file)

by setting max_bytes_for_level_base.

Implementation Overview of a Range Query. For each
range query in [low, high], we first probe all filter instances
to verify the existance of the range. If all filters answer nega-

tive, we delete the iterator and return an empty result. If one

or more filters answer positive, we probe the fence pointers

and seek the lower end of the query using seek(low) which
incurs I/O. If seek() returns a valid pointer, we perform a

next() operation on the two-level iterator which advances

the child iterators to read the corresponding fence pointers

followed by the data blocks. When the iterator reaches (or

crosses) the upper bound high, next() returns false.

Minimizing Deserialization-Overhead. To perform a fil-

ter probe for an SST file, we first need to retrieve the filter. If

the filter comes from disk, we need to first deserialize it. Fil-

ter serialization incurs a low, one-time CPU-cost as it takes

place once during the creation of a filter instance. However,

by default, deserialization takes place as many times as the

number of queries. Being a trie with a tree structure, the cost

5
For caching filters and fence pointers, we set the

cache_index_and_filter_blocks to true. We also ensure that

the fence pointers and filter blocks have a higher priority

than data blocks when block cache is used. For this, we set

cache_index_and_filter_blocks_with_high_priority=true and

pin_l0_filter_and_index_blocks_in_cache=true.
6level0_file_num_compaction_trigger=3

of deserialization in SuRF is low as it can choose to deserialize

only a part of the filter as needed. On the other hand, Rosetta

being based on Bloom filters cannot take advantage of partial

filter bits. To this end, we construct a dictionary containing

the mapping of the deserialized bits of each Rosetta instance

and its corresponding run in the LSM-tree. Every time a

Rosetta instance is constructed, we add this mapping to the

dictionary which prevents frequent calls to deserialization at

runtime. After each compaction, we delete the corresponding

entries from the dictionary.

5 EXPERIMENTAL EVALUATION
We now demonstrate that by sacrificing filter probe cost,

Rosetta achieves drastically lower FPR, bringing up to 70%

net improvement in end-to-end performance in default RocksDB,

and 50% against a SuRF-integrated RocksDB.

Baselines. We use the following baselines for comparison

– state-of-the-art range query filter, SuRF
7
[74] integrated

into RocksDB, RocksDB with Prefix Bloom filters and vanilla

RocksDB with no filters but only fence pointers. For SuRF,

we used the open-source implementation
8
with additional

stubs to tailor the code path to the master template. For the

other baselines (Prefix Bloom filters and vanilla RocksDB

with no filters but only fence pointers), we use the default

RocksDB implementation of each of them. All baselines use

the same source RocksDB version v6.3.6.

Workload and Setup. We generate YCSB key-value work-

loads that are variations of Workload E, a majority range

scan workload modeling a web application use case [18]. We

generate 50 million (50 × 106) keys each of size 64 bits (and

512 byte values) using both uniform, and normal distribu-

tions. We vary the maximum size of range queries, and target

scan distribution. We set a default budget of 22 bits per key

to each filter unless specified otherwise. Rosetta can tune

itself to achieve a specific memory budget, while with SuRF

we need to implicitly trade memory for FPR by increasing a

built-in parameter called suffix length. When given a mem-

ory budget, we use a binary search on the suffix length to

locate the SuRF version that gives the closest memory cost to

the given memory budget. Exceptional cases happen when

the minimum possible memory occupied by SuRF (when

we set suffix length to 0) is still greater than the memory

budget. In this case, we use the SuRF version that achieves

its minimum possible memory budget. As filters are meant

to improve performance by capturing false positives, and

thus reducing the number of I/Os, a filter is best evaluated

in presence of empty queries. Therefore, for all our experi-

ments, our workload is comprised of empty range and point

queries to capture worse-case behavior.

7
https://github.com/efficient/SuRF

8
https://github.com/efficient/rocksdb

https://github.com/efficient/SuRF

 0

 2

 4

 6

 8

 10

 12

Rosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRF
W

or
kl

oa
d

ex
ec

ut
io

n
la

te
nc

y
(m

s)10
8

4

1 2 8 16 32
Range size

4

6

2

12

64
 0
 5

 10
 15
 20
 25
 30
 35

Rosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRF

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(m
s)

(C) Normal data (50M) + uniform workload + 22 bits/key

 0

 2

 4

 6

 8

 10

RosettaSuRFRosettaSuRFRosettaSuRFRosettaSuRFRosettaSuRFRosettaSuRFRosettaSuRF

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

) 8

6

4

2

C
PU

 c
os

t (
se

co
nd

)

1 2 8 16 32 644
 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

Rosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRFRosetta1SuRF

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(m
s)

16

12

8

4

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

on
d)

1 2 8 16 32 644

30

20

10

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

on
d)

1 2 8 16 32 64
Range size

(B) Uniform data (50M) + correlated workload + 22 bits/key

4

(R)

(S) (S) (S) (S) (S) (S) (S)

(R) (R) (R) (R)

(R) (R)
(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)
(R)

(S)
(R)

(S)
(R)

(S)
(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

IO cost CPU-IO overlap CPU cost filter probedeserializationserialized get residual seek

(A1) Uniform data (50M) + uniform workload + 22 bits/key (A2) Break-down of CPU cost for uniform workload

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

(R)

(S)

2 4 8 16 32 64
0

20

40

60

75

2 4 8 16 32 64
0.00

0.01

0.02

0.03

(A3) Comparison of FPR

FP
R

(D) Rosetta outperforms all baselines

Rosetta

SuRF

Rosetta

SuRF
Pref

ix
Bloo

m

Filte
rs

Fen
ce

po
int

ers

Figure 5: Rosetta improves end-to-end RocksDB performance across diverse workloads.

Experimental Infrastructure. Weuse aNUC5i3ryh server

with a 5th Generation Intel Core i3 CPU, 8GB main memory,

1 TB SATA HDD at 7200 RPM, and 120GB SSD with version

Samsung 850 EVO m.2 120GB Samsung EVO 850 SSD. The

operating system is Ubuntu version 16.04 LTS.

Rosetta Improves the Performance of RocksDB. In our
first experiment we demonstrate the benefits of Rosetta in

a uniform workload while varying the query range from 1

to 64. For each range size, we measure the the end-to-end

performance in terms of workload execution latency, for both

Rosetta-integrated RocksDB and SuRF-integrated RocksDB.

Figure 5(A1) shows the results denoting the measurements

of Rosetta and SuRF using R and S, respectively. Figure 5(A1)

also reports how the total cost for each system is spread

among disk I/Os, CPU usage, and the overlap between the

two. The total time emanating from disk I/Os and overall

CPU usage are obtained using RocksDB-reported metric

– block_read_time and iter_seek_cpu_nanos. The cost

for I/O and CPU taken together exceeds the total cost due

to cycle-stealing within the processor architecture which

prevents wasting CPU cycles. Therefore, the CPU-IO overlap

contributes to both the CPU and I/O cost. For measuring

the sub-costs due to serialization, deserialization, and filter

probe, we have embedded custom statistics into RocksDB

using the internal stopwatch() support.

Figure 5(A1) shows that the performance of Rosetta is up to

4× better compared to SuRF. For shorter ranges till range size

of 16, Rosetta incurs a negligible I/O overhead compared to

SuRF with 22 bits per key. This behavior is due to the design

differences between SuRF and Rosetta – SuRF employs a

trie-culling design that prunes a full-trie’s bottom elements,

which contain important information for answering short

range queries, whereas, Rosetta takes advantage of its lower

level Bloom filters for answering short range queries. This

significantly reduces the FPR achieved by Rosetta for shorter

ranges, as shown in Figure 5(A3). The mean FPR of Rosetta

for shorter ranges is 0.00012 whereas, it is 0.0242 for SuRF.
This leads to a 70% reduction of I/O cost for shorter ranges

in Rosetta. The gap closes for bigger ranges as more of the

data has to be scanned and more areas in the filters need to

be probed. As the range size increases beyond 16, although

the FPR of Rosetta increases, it is still 1.5× less than that of

SuRF which reduces the I/O cost by 13.6%.

Sacrificing Filter Probe Cost Leads To Better Perfor-
mance with Rosetta. In Figure 5(A2), we magnify the CPU

cost reported in Figure 5(A1) and break it down further into

sub-costs: fetching serialized filter bits before a filter probe,

deserializing filter bits, probing the filter, and performing

residual operations seek() which includes routine jobs per-

formed by RocksDB iterators – looking for checksum mis-

match and I/O errors, going forward and backward over the

data, filters and fence pointers, and creating and managing

database snapshots for each query. Figure 5(A2) shows that

the cost of serialization is negligible (about 0.7% for both

SuRF and Rosetta), and hence is not visible within the stacked

breakdown. The CPU overhead of deserialization is signifi-

cant yet close across both filters – about 14.5% and 11.1% for

Rosetta and SuRF, respectively. Overall, the cost of serializa-

tion and deserializtion do not fluctuate across diverse range

sizes as both these operations account for constant amount

CPU work for each query.

The critical observation from Figure 5(A2) is that filter

probe cost is a non-dominant portion of the overall CPU

cost. Rosetta does incur a higher filter probe cost compared

to SuRF (19% of total CPU cost compared to 5%). The reason is

that Rosetta probes its internal Bloom filters once per dyadic

interval of the target query range. Within each interval, the

deeper Bloom filters are recursively probed until one of them

returns a negative. On the other hand, with SuRF a probe

involves only checking the existence of (i) a smaller number

of (ii) fixed-length prefixes.

However, this CPU-intensive design leads to bigger gains

for Rosetta. It allows Rosetta to achieve lower FPR (Fig-

ure 5(A3)) resulting in 2 − 4× end-to-end improvement for

RocksDB (Figure 5(A1)). The improved FPR does not only

help with I/O but it also affects the fourth CPU-overhead

contributing to the residual seek cost. On averaging over dif-

ferent range sizes, the overhead due to residual seek is about

65% and 82% for Rosetta and SuRF, respectively, thereby dom-

inating the overall CPU cost. This overhead comprises of

a (i) fixed component (invariable across varied range sizes)

due to creation and maintenance of top-level iterators in

RocksDB for all queries and (ii) a variable component due to

longer usage of child iterators per query due to reading more

data or fence pointer blocks in case of false or true positives.

For example, as we compare the results across Figures 5(A1),

(A2), and (A3), we notice that Rosetta shows a fixed over-

head of about 2.7 seconds for shorter ranges, i.e., when FPR

is significantly close to 0. The variable cost starts showing

up as the FPR increases for range size 32 and 64. Due to high

FPR in SuRF, we observe that this part of the CPU-overhead

is significantly higher.

Therefore, sacrificing the CPU cost due to filter probe

significantly reduces (a) the CPU overhead originating from

seek() (which also dominates the total CPU cost) and of

course (b) the total I/O cost of the workload due to lower

FPR. The consolidated effects of (a) and (b) make a significant

difference in the end-to-end performance for Rosetta.

Rosetta Enhances RocksDB for Key-Correlated Work-
loads. In order to investigate the benefits of Rosetta across

diverse workload types, we repeat the previous experiment

on both correlated and skewed workloads. First, we analyze

workloads that exhibit prefix similarity between queried

keys and stored keys. For this experiment, we introduce a

correlation factor θ such that a range query with correla-

tion degree θ has its lower bound at a distance θ from the

lower bound generated using the distribution. Therefore, for

a range query of size R, if the generated lower-bound is l ,
then we set the actual lower-bound to be at key l + θ . For
this experiment, we set θ = 1.

Figure 5(B) depicts that when the workload entails a key

correlation, Rosetta-integrated RocksDB on average achieves

a 75% lower latency than that of SuRF-integrated RocksDB.

This is because when the lower bound of a query falls close

to a key, even if the range is empty, SuRF will always answer

it as positive, since it will have likely culled that key’s pre-

fixes which contain the information to answer the query. In

contrast, for any query, Rosetta is able to decompose it into

prefix checking which is insensitive to the correlation.

Rosetta Enhances RocksDB for Skewed Key Distribu-
tion. For this experiment, we generate a dataset compris-

ing of 50M keys following a normal distribution and exe-

cute a uniform workload on the dataset. In Figure 5(C), we

demonstrate that Rosetta offers up to 2× performance bene-

fits over SuRF with skewed keys for end-to-end performance

in RocksDB. As more skewed keys are added to a run, the

number of distinct keys within the run decreases. This leads

to more prefix collisions which makes the trie-culling ap-

proach of SuRF vulnerable to false positives. On the other

hand, Rosetta can resolve the collision through more probes

at the deeper level Bloom filters. On average, Figure 5(C)

shows that Rosetta enhances performance over SuRF by 52%

and 19% for short and long range queries, respectively.

Rosetta improves default RocksDB by as much as 40x.
We now demonstrate the benefits of Rosetta against the

default filters of RocksDB using the 50M uniform workload

setup (as in Figure 5(A)). In Figure 5(D), we observe that both

Prefix Bloom filters and fence pointers offer significantly

higher latency compared to both SuRF and Rosetta. This is

because fence pointers cannot detect empty range queries

especially when the range size is significantly lower than the

size of the key domain (2
64
). Prefix Bloom filters also cause

a high FPR due to frequent prefix collisions as the range

size increases. Rosetta offers the lowest latency among all

baselines bringing an up to 40× improvement over default

RocksDB. While the benefit reduces with larger range sizes,

key-value stores are fundamentally meant to support point

lookups, writes, and short range queries as opposed to scans

and long range queries [38, 57, 60].

Rosetta’s Construction Cost Adds Minimal Overhead.
All types of filters in an LSM-based key-value store need to

be reconstructed after a merge occurs. In our next experi-

ment, we demonstrate the impact of this construction cost

as we vary the data size. First, we set the size of L0 to be

very high (30 runs) so that the entire data fits into L0 and

there is no compaction. This way, we can isolate and measure

the filter construction cost without taking into account the

overlap with the compaction overhead. We vary the SST file

size between 256MBs and 1 GB which, in turn, increases the

number of filter instances created from 5 to 59. Figure 6(A)

shows that the average filter construction cost of Rosetta is

about 14% less than that of SuRF. This is because Rosetta cre-

ates a series of Bloom filters which are densely packed arrays,

causing fewer memory misses compared to populating a tree.

Next, in order to study the more holistic impact of filters on

write costs, we restored the size of L0 to 3 (as in other exper-

iments) and measure the end-to-end workload execution la-

tency for both the filters as well as vanilla RocksDBwith only

fence pointers (denoted by F in the results). In Figure 6(B),

 0

 100

 200

 300

 400

 500

 600

 700

RosettaSuRF None RosettaSuRF None RosettaSuRF None

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(m
s)

read
filter creation
compaction

10M 20M 30M
Data size

600

400

200

W
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

)

(R)

(R)
(R)

(S)

(S)

(S)
(F)

(F)

(F)

20

15

10

Fi
lte

r c
re

at
io

n
la

te
nc

y
(s

ec
)

5
(R)

(S)

25

(R)(S)

(R)
(S) (R)

(S)

(R)
(S)

(R)
(S)SST size: 256 MB

SST size: 1 GB

(A)

(B)

Figure 6: Rosetta incurs minimal
filter construction overhead dur-
ing compactions.

we break down

the overall cost

into separate costs

due to reads and

writes and writes

are further bro-

ken down into

sub-costs emanat-

ing from both com-

paction and filter

creation. We ob-

serve that write-

overhead is less

for fence point-

ers as there is no

filter construction overhead, but reads are expensive due

to high false-positives. On the other hand, both SuRF and

Rosetta have higher write-overhead due to the additional

work of recreating filters after each compaction. To givemore

insights, we measure the total compaction time (T), and the

bytes read (R) and written (W) during compaction and denote

the compaction overhead to be T/(R+W). We observe this

overhead to be 0.006µs/byte, 0.008µs/byte, and 0.007µs/byte
for Rosetta, SuRF, and fence pointers respectively. Thus, the

overall overhead in Rosetta due to the more complex filter

structure is minimal compared to SuRF or even compared

to having no filter at all. Critically, this overhead is over-

shadowed by the improved FPR which, in turn, drastically

improves query performance on every run of the tree. Of

course, for purely insert-heavy workloads, no filters should

be maintained (Rosetta, SuRF, or Bloom filters) as they would

be constructed bur never (or hardly ever) be used.

Rosetta Maintains RocksDB’s Point-Query Efficiency.
We now show that unlike other filters, Rosetta not only

brings benefits in range queries but also does not hurt point

queries. We experiment with a uniform workload of 50M

keys. We vary the bits per key from 10 to 20 and measure

the change in FPR for both SuRF and Rosetta, compared to

the Bloom filters on RocksDB. Figure 7 shows the results.

SuRF-Hash and SuRF-real offer a drastically higher FPR. For

example, the point-query FPR of SuRF-Hash is 10× worse

compared to that of the default Bloom filter in RocksDB as

it incurs more hash collisions with large number of keys.

Similarly, if we were to use Prefix Bloom filters, FPR for

point queries goes all the way up to 1 in this case. On the

other hand, Rosetta only uses its last level Bloom filter which

effectively indexes all bits of the keys and thus, brings great

FPR. It keeps up the performance for larger memory bud-

gets compared to the Bloom filters on RocksDB and even

improves on it as more memory becomes available.

The most critical observation from this experiment is that

FP
R

Rosetta

SuRF-Hash

Bloom filter

bits/key

0.1

0.01

0.001

SuRF-Real

Prefix Bloom Fillter

Figure 7: Rosetta main-
tains the point query per-
formance on RocksDB.

the filters which are meant

to be used for range queries,

i.e., SuRF-Real and Prefix

Bloom filters cannot give ad-

equate point query perfor-

mance. Thus, a key-value

store would need to either

maintain two filters per run

(one for point queries and

one for range queries), or

lose out on performance for

one of the query types. On

the other hand, Rosetta can efficiently support both query

types.

Robust BenefitsAcross theMemoryHierarchy. For this
experiment, we compare SuRF and Rosetta outside RocksDB

to verify whether we see the same behavior as in the full

system experiments. We use 10M keys each of size 64 bits.

The experiment is performed using a uniform workload.

Mem SSD HDD0.
0

0.
5

1.
0

1.
5

2.
0

Rosetta
SuRF

R
es

po
ns

e
Ti

m
e

(1
05 m

ic
ro

se
cs

)
0.09 FPR

0.95 FPR

p: 2.64

p: 0.70

p: 2.64

p: 0.70

0.09 FPR

0.95 FPR

p: 2.57

p: 0.71

0.09 FPR

0.95 FPR

Figure 9: Rosetta improves
performance across the
memory hierarchy.

We measure end-to-end la-

tency to access data in

memory, HDD, or SSD, as

shown in Figure 9. For all

storagemedia, Rosetta does

spend more time in filter

probe cost (represented by

p), but the improved re-

sulting FPR translates to

end-to-end benefits even in

memory. Thus, this result

verifies the same end-to-end behavior we observe when in-

tegrating the filters in RocksDB.

Rosetta ProvidesCompetitive Performancewith String
Data. Given that SuRF is based on a trie designwhile Rosetta
is based on hashing, the natural expectation with string

data is that SuRF will be better. We now show that Rosetta

achieves competitive performance to SuRF with string data.

We use again a standalone experiment here, outside RocksDB

to further isolate the properties of the filters.

We use a variable-length string data set, Wikipedia Ex-

traction (WEX)
9
comprising of a processed dump (of size

6M) of English language in Wikipedia. The wiki markup for

each article is transformed into machine-readable XML, and

common relational features such as templates, infoboxes,

categories, article sections, and redirects are extracted in tab-

ular form. We generate a workload comprising of 1 million

9
https://aws.amazon.com/de/datasets/wikipedia-extraction-wex/

ra
ng

e
si

ze

0

32

64

10 15 20 25 30

2

8

16

24

32

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30

2

8

16

24

32

10 15 20 25 30

2

8

16

24

32

10 15 20 25 30

2
8

16

24

32

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30

2

8

16

24

32

10 15 20 25 30

2

8

16

24

32

10 15 20 25 30

2

8

16

20

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30

2

8

16

20

w
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

)

False positive rate

Rosetta (latency) SuRF (latency) Rosetta (FPR) SuRF (FPR)

10 15 20 25 30

2

8

16

20

ra
ng

e
si

ze

memory (bits/key)

0

32

64

2610 13 24

Analytical systems Rosetta SuRF

(A)

ra
ng

e
si

ze

0

32

64

(C)

(J)

Memory
too high
to use a

filter

Memory
too high
to use a

filter

Memory
too high
to use a

filter

10M 20M 30M Data size: Workload
type:

uniform

correlated

skew

(E)

(I)

(F)

(B)

(G)

(K)

bits/key bits/key bits/key

(D)

(H)

(L)

Figure 8: Rosetta exhibits a superior FPR-Memory tradeoff, compared to SuRF, acrossmultiple workloads. Rosetta
serves a larger spectrum of key-value workloads under diverse range sizes and memory budget.

0
10

00
0

25
00

0
R

es
po

ns
e

Ti
m

e
(m

ic
ro

se
cs

)

R
os

et
ta

R
os

et
ta

R
os

et
ta

R
os

et
ta

Su
R

F
R

os
et

ta

Su
R

F
R

os
et

ta

Su
R

F
R

os
et

ta

 6 10 14 18 22 26 30
Bits per key

disk access insertion and filter probe

FPR: .9 .9 .8 .8 .8 .9 .7 .9 .7 .9

10
20

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

0
30

Figure 10: Rosetta achieves good performance with
strings across all memory budgets.

queries drawn uniformly from the data set. We set the range

size to be 128 and we vary the memory budget from 6 bits

per key to 30 bits per key. For each setting of memory budget,

we record the FPR, the mean execution time of each query,

and the filter probe cost. Figure 10 shows that overall both

Rosetta and SuRF offer similar FPR with SuRF outperforming

Rosetta marginally. However, we also observe that there is a

wide spectrum of memory budgets where SuRF cannot be

applied as it demands a minimum memory of 20 bits per key

to store the prefixes. Rosetta can support workloads with

low memory budget and still keep up a low FPR leading to

robust end-to-end performance.

Rosetta Exhibits a Superior FPR-Memory Tradeoff
Across Diverse Workloads and Memory Budgets. We

now return to the full RocksDB experiments and proceed

to give a more high level positioning on when to use which

filter. We do that by fixing the range size to the longest range

size of 64 (i.e., the worst case for Rosetta) varying the bits

per key allocated to each filter from 10 to 32. We also vary

the data set to contain 10M to 30M keys. We measure both

the FPR and the end-to-end workload execution latency for

uniform, correlated, and skewed workloads.

Figures 8(A)-(C) depict results for uniform workloads. Fig-

ures 8(E)-(G) depict results for correlated workloads. And

finally, Figures 8(I)-(K) depict result for skewed workloads.

Across all workloads, we observe consistently that Rosetta

achieves an overall superior performance and that it can

make better use of additional memory to lower the FPR. Intu-

itively, this is because its core underlying structure is Bloom

filters where every additional bit may be utilized more, com-

pared to SuRF where where the prefixes are culled beyond

a definite length. Although the additional suffixes for SuRF-

real do help in reducing the FPR, it still falls behind the FPR

achieved by Rosetta.

When memory budget is very tight, SuRF does gain over

Rosetta. However, the latency achieved at these constrained

10 15 20 25 30

2

6
8
10
12

0.2

0.4

0.6

0.8

1.0

10 15 20 25 30
bits/key bits/key bits/key

10 15 20 25 30

0.2

0.4

0.6

0.8

1.0 False positive rate

Rosetta (latency) SuRF (latency) Rosetta (FPR) SuRF (FPR)

range: 8 range: 16 range: 32(C)(B)(A)

w
or

kl
oa

d
ex

ec
ut

io
n

la
te

nc
y

(s
ec

)

Figure 11: Rosetta always improves performance for
smaller range sizes.

memory levels is substantially worse than with a few addi-

tional bits per key. Therefore, for most practical applications,

especially on the cloud, it makes sense to devote the ad-

ditional bits. This decision also depends on other factors

such as the cloud cost policy, e.g., increasing memory bud-

get may lead to upgrading the hardware to high-end virtual

machines, which also improves the cap on the maximum

allowed throughput and hence, may significantly reduce la-

tency. Figure 11 repeats the same experiment for smaller

ranges and shows that Rosetta is nearly always better.

Holistic Positioning of SuRF and Rosetta. Overall, our
results indicate that both SuRF and Rosetta can bring signifi-

cant advantages complementing each other across different

workloads. Figures 8(D), (H), and (L) summarize when each

filter is most suitable with respect to data size, range size and

memory budget. All three figures denote the spectrum of sce-

narios of executing workloads on key-value stores. Within

each figure, we partition horizontally to indicate different

range sizes and vertically to indicate different memory bud-

gets. The area beyond a memory budget of 26 bits per key

is too high for filters to be used and the area beyond range

size of 64 is meant to be served using analytical systems or

column stores. Our observation is that, Rosetta works better

for short and medium range queries across all workload-

memory combinations. For long range queries, although the

point of separation slightly varies with the workload type,

overall SuRF performs better with low memory budget and

Rosetta covers the area with high memory budget.

6 RELATEDWORK
We now discuss further related work on range filtering.

Range Filter with Optimal Space. Goswami et al. [44]

analyzes the space lower bound for a range filter. The pri-

mary technique of the proposed data structure is based on a

pairwise-independent and locality-hash function. The keys

are hashed by the function, and then a weak prefix search

data structure is built based on the hashed keys for answer-

ing range queries. Their algorithm does not use Bloom filters,

dyadic ranges, nor memory allocation strategies, which are

the core design components in Rosetta.

Dyadic Intervals for Other Applications. The idea of

decomposing large ranges of data to dyadic intervals has

been applied widely for streaming applications [19, 20, 23]

to enable computation of sophisticated aggregates – quan-

tiles [41], wavelets [40], and histograms [39]. The canoni-

cal dyadic decomposition has also been exploited to deter-

mine and track the most frequently used data within a data

store [22] as well as to support range query investigations

for privacy-preserving data analysis, i.e., processing noisy

variants of confidential user data [21]. Other efforts in this

direction include designing persistent sketches so that the

sketches can be queried about a prior state of data [59, 70]

and facilitating range queries using multi-keyword search

with security-performance trade-offs [31].

Among these, the closest to our work are the 1) Count-

Min sketch [20, 23] and 2) Persistent Bloom Filters (PBF) [59].

The Count-Min sketch integrates bloom filters within dyadic

partitions or Segment Trees. The work demonstrates the effi-

ciency of approximate query answering using the integrated

framework. However, Rosetta is different from the Count-

Min sketch framework in the following ways: (i) Rosetta han-

dles diverse workloads composed of different query types

and interleaved access patterns, (ii) Rosetta specifically con-

sider the CPU-memory contention affecting workload per-

formance, and (iii) Rosetta considers resource-constrained

situations where it is crucial to design an optimal allocation

scheme for storing the filters and dyadic data partitions.

PBF [59] solves a different problem, i.e., answering a point

query over a time range (e.g. does this IP address appear

between 9pm and 10pm?). Our solutions use similar design

elements, e.g., Bloom filters and dyadic range decomposition,

but ours differs significantly in several ways. Firstly, we

achieve a new balance, trading more CPU time for a better

FPR. Furthermore, Rosetta achieves memory-optimality with

respect to themaximum range size and FPR, due to being able

to effectively assign different memory budgets to different

Bloom filters.

7 CONCLUSION
We introduce Rosetta, a probabilistic range filter designed

specifically for LSM-tree based key-value stores. The core

idea is to sacrifice filter probe time which is not visible in end-

to-end key-value store performance in order to significantly

reduce FPR. Rosetta brings benefits for short and medium

range queries across various workloads (uniform, skewed,

correlated) without hurting point queries.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their valuable feed-

back. This work is partially funded by the USA Department

of Energy project DE-SC0020200.

REFERENCES
[1] Abadi, D. J., Boncz, P. A., Harizopoulos, S., Idreos, S., and Mad-

den, S. The Design and Implementation of Modern Column-Oriented

Database Systems. Foundations and Trends in Databases 5, 3 (2013),

197–280.

[2] Alsubaiee, S., Altowim, Y., Altwaijry, H., Behm, A., Borkar,

V. R., Bu, Y., Carey, M. J., Cetindil, I., Cheelangi, M., Faraaz, K.,

Gabrielova, E., Grover, R., Heilbron, Z., Kim, Y.-S., Li, C., Li, G.,

Ok, J. M., Onose, N., Pirzadeh, P., Tsotras, V. J., Vernica, R., Wen,

J., and Westmann, T. AsterixDB: A Scalable, Open Source BDMS.

Proceedings of the VLDB Endowment 7, 14 (2014), 1905–1916.

[3] Alsubaiee, S., Carey, M. J., and Li, C. Lsm-based storage and indexing:

An old ideawith timely benefits. In Second International ACMWorkshop

on Managing and Mining Enriched Geo-Spatial Data (2015), pp. 1–6.

[4] Apache. Accumulo. https://accumulo.apache.org/ .

[5] Apache. HBase. http://hbase.apache.org/ .

[6] Armstrong, T. G., Ponnekanti, V., Borthakur, D., and Callaghan,

M. Linkbench: a database benchmark based on the facebook social

graph. In Proceedings of the 2013 ACM SIGMOD International Conference

on Management of Data (2013), pp. 1185–1196.

[7] Athanassoulis, M., Kester, M. S., Maas, L. M., Stoica, R., Idreos,

S., Ailamaki, A., and Callaghan, M. Designing Access Methods:

The RUM Conjecture. In Proceedings of the International Conference on

Extending Database Technology (EDBT) (2016), pp. 461–466.

[8] Balmau, O., Didona, D., Guerraoui, R., Zwaenepoel, W., Yuan, H.,

Arora, A., Gupta, K., and Konka, P. TRIAD: Creating Synergies

Between Memory, Disk and Log in Log Structured Key-Value Stores.

In Proceedings of the USENIX Annual Technical Conference (ATC) (2017),

pp. 363–375.

[9] Bender, M. A., Farach-Colton, M., Johnson, R., Kraner, R., Kusz-

maul, B. C., Medjedovic, D., Montes, P., Shetty, P., Spillane, R. P.,

and Zadok, E. Don’t Thrash: How to Cache Your Hash on Flash.

Proceedings of the VLDB Endowment 5, 11 (2012), 1627–1637.

[10] Bloom, B. H. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Communications of the ACM 13, 7 (1970), 422–426.

[11] Bortnikov, E., Braginsky, A., Hillel, E., Keidar, I., and Sheffi, G.

Accordion: Better Memory Organization for LSM Key-Value Stores.

Proceedings of the VLDB Endowment 11, 12 (2018), 1863–1875.

[12] Bu, Y., Borkar, V. R., Jia, J., Carey, M. J., and Condie, T. Pregelix:

Big(ger) Graph Analytics on a Dataflow Engine. Proceedings of the

VLDB Endowment 8, 2 (2014), 161–172.

[13] Callaghan, M. CPU overheads for RocksDB queries.

http://smalldatum.blogspot.com/2018/07/query-cpu-overheads-

in-rocksdb.html, July 2018.

[14] Cao, Z., Chen, S., Li, F., Wang, M., andWang, X. S. LogKV: Exploiting

Key-Value Stores for Log Processing. In Proceedings of the Biennial

Conference on Innovative Data Systems Research (CIDR) (2013).

[15] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A.,

Burrows, M., Chandra, T., Fikes, A., and Gruber, R. E. Bigtable: A

distributed storage system for structured data. In 7th USENIX Sympo-

sium on Operating Systems Design and Implementation (OSDI) (2006),

pp. 205–218.

[16] Chen, G. J., Wiener, J. L., Iyer, S., Jaiswal, A., Lei, R., Simha, N.,

Wang, W., Wilfong, K., Williamson, T., and Yilmaz, S. Realtime

data processing at facebook. In Proceedings of the 2016 International

Conference on Management of Data (2016), pp. 1087–1098.

[17] CockroachLabs. CockroachDB.

https://github.com/cockroachdb/cockroach.

[18] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears,

R. Benchmarking cloud serving systems with YCSB. In Proceedings of

the ACM Symposium on Cloud Computing (SoCC) (2010), pp. 143–154.

[19] Cormode, G. Sketch techniques for approximate query processing. In

Foundations and Trends in Databases (2011).

[20] Cormode, G., Garofalakis, M. N., Haas, P. J., and Jermaine, C.

Synopses for Massive Data: Samples, Histograms, Wavelets, Sketches.

Foundations and Trends in Databases 4, 1-3 (2012), 1–294.

[21] Cormode, G., Kulkarni, T., and Srivastava, D. Answering Range

Queries Under Local Differential Privacy. In arXiv:1812.10942 (2018).

[22] Cormode, G., and Muthukrishnan, S. What’s Hot and What’s Not:

Tracking Most Frequent Items Dynamically. In PODS (2003).

[23] Cormode, G., and Muthukrishnan, S. An Improved Data Stream

Summary: The Count-Min Sketch and Its Applications. In LATIN 2004:

Theoretical Informatics, 6th Latin American Symposium, Buenos Aires,

Argentina, April 5-8, 2004, Proceedings (2004), vol. 2976, pp. 29–38.

[24] Dayan, N., Athanassoulis, M., and Idreos, S. Monkey: Optimal Navi-

gable Key-Value Store. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (2017), pp. 79–94.

[25] Dayan, N., Athanassoulis, M., and Idreos, S. Optimal Bloom Filters

and Adaptive Merging for LSM-Trees. ACM Transactions on Database

Systems (TODS) 43, 4 (2018), 16:1–16:48.

[26] Dayan, N., Bonnet, P., and Idreos, S. GeckoFTL: Scalable Flash

Translation Techniques For Very Large Flash Devices. In Proceedings

of the ACM SIGMOD International Conference on Management of Data

(2016), pp. 327–342.

[27] Dayan, N., and Idreos, S. Dostoevsky: Better space-time trade-offs

for lsm-tree based key-value stores via adaptive removal of superflu-

ous merging. In Proceedings of the 2018 International Conference on

Management of Data (2018), pp. 505–520.

[28] Dayan, N., and Idreos, S. The log-structured merge-bush & the

wacky continuum. In Proceedings of the 2019 International Conference

on Management of Data (2019), pp. 449–466.

[29] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf,

O. C. More geometric data structures. In Computational Geometry.

2000, pp. 211–233.

[30] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-

man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., and Vogels,

W. Dynamo: Amazon’s Highly Available Key-value Store. ACM SIGOPS

Operating Systems Review 41, 6 (2007), 205–220.

[31] Demertzis, I., Papadopoulos, S., Papapetrou, O., Deligiannakis, A.,

and Garofalakis, M. Practical Private Range Search Revisited. In

ACM SIGMOD (2016).

[32] Dgraph. Badger Key-value DB in Go. https://github.com/dgraph-

io/badger .

[33] Dharmapurikar, S., Krishnamurthy, P., and Taylor, D. E. Longest

prefix matching using bloom filters. In Proceedings of the 2003 Con-

ference on Applications, Technologies, Architectures, and Protocols for

Computer Communications (2003), pp. 201–212.

[34] Dong, S., Callaghan, M., Galanis, L., Borthakur, D., Savor, T., and

Strum, M. Optimizing Space Amplification in RocksDB. In Proceedings

of the Biennial Conference on Innovative Data Systems Research (CIDR)

(2017).

[35] Facebook. MyRocks. http://myrocks.io/ .

[36] Facebook. RocksDB. https://github.com/facebook/rocksdb.

[37] Fan, B., Andersen, D. G., Kaminsky, M., and Mitzenmacher, M.

Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the

ACM International on Conference on emerging Networking Experiments

and Technologies (CoNEXT) (2014), pp. 75–88.

[38] Gembalczyk, D., Schuhknecht, F. M., and Dittrich, J. An Ex-

perimental Analysis of Different Key-Value Stores and Relational

Databases. In Datenbanksysteme fur Business, Technologie und Web

(BTW’17) (2017).

[39] Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrishnan, S., and

Strauss, M. Fast, small-space algorithms for approximate histogram

maintenance. In Proceedings of the 34
th

ACM Symposium on Theory of

Computing (2002).

[40] Gilbert, A., Kotidis, Y., Muthukrishnan, S., and Strauss, M. Surf-

ing wavelets on streams: One-pass summaries for approximate aggre-

gate queries. In Proceedings of International Conference on Very Large

Data Bases (2003).

[41] Gilbert, A. C., Kotidis, Y., S.Muthukrishnan, and M.Strauss. How

to summarize the universe: Dynamic maintenance of quantiles. In

Proceedings of International Conference on Very Large Data Bases (2002).

[42] Golan-Gueta, G., Bortnikov, E., Hillel, E., and Keidar, I. Scaling

Concurrent Log-Structured Data Stores. In Proceedings of the ACM

European Conference on Computer Systems (EuroSys) (2015), pp. 32:1–

32:14.

[43] Google. LevelDB. https://github.com/google/leveldb/ .

[44] Goswami, M., Grønlund, A., Larsen, K. G., and Pagh, R. Approx-

imate range emptiness in constant time and optimal space. In Pro-

ceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete

algorithms (2014), pp. 769–775.

[45] Idreos, S., Dayan, N., Qin, W., Akmanalp, M., Hilgard, S., Ross, A.,

Lennon, J., Jain, V., Gupta, H., Li, D., and Zhu, Z. Design continuums

and the path toward self-designing key-value stores that know and

learn. In Biennial Conference on Innovative Data Systems Research

(CIDR) (2019).

[46] Jagadish, H. V., Narayan, P. P. S., Seshadri, S., Sudarshan, S., and

Kanneganti, R. Incremental Organization for Data Recording and

Warehousing. In Proceedings of the International Conference on Very

Large Data Bases (VLDB) (1997), pp. 16–25.

[47] Jannen, W., Yuan, J., Zhan, Y., Akshintala, A., Esmet, J., Jiao, Y.,

Mittal, A., Pandey, P., Reddy, P., Walsh, L., Bender, M. A., Farach-

Colton, M., Johnson, R., Kuszmaul, B. C., and Porter, D. E. BetrFS:

A Right-optimized Write-optimized File System. In Proceedings of

the USENIX Conference on File and Storage Technologies (FAST) (2015),

pp. 301–315.

[48] Jermaine, C., Omiecinski, E., and Yee, W. G. The Partitioned Expo-

nential File for Database Storage Management. The VLDB Journal 16,

4 (2007), 417–437.

[49] Kahveci, T., and Singh, A. Variable length queries for time series

data. In Proceedings 17th International Conference on Data Engineering

(2001), pp. 273–282.

[50] Kondylakis, H., Dayan, N., Zoumpatianos, K., and Palpanas, T.

Coconut palm: Static and streaming data series exploration now in

your palm. In Proceedings of the 2019 International Conference on

Management of Data (2019), pp. 1941–1944.

[51] Kondylakis, H., Dayan, N., Zoumpatianos, K., and Palpanas, T.

Coconut: sortable summarizations for scalable indexes over static and

streaming data series. The VLDB Journal (09 2019).

[52] Kyrola, A., and Guestrin, C. Graphchi-db: Simple design for a scal-

able graph database system–on just a pc. arXiv preprint arXiv:1403.0701

(2014).

[53] Lakshman, A., and Malik, P. Cassandra - A Decentralized Structured

Storage System. ACM SIGOPS Operating Systems Review 44, 2 (2010),

35–40.

[54] Li, Y., He, B., Yang, J., Luo, Q., Yi, K., and Yang, R. J. Tree Indexing on

Solid State Drives. Proceedings of the VLDB Endowment 3, 1-2 (2010),

1195–1206.

[55] LinkedIn. Voldemort. http://www.project-voldemort.com.

[56] Lu, L., Pillai, T. S., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. H.

WiscKey: Separating Keys from Values in SSD-conscious Storage. In

Proceedings of the USENIX Conference on File and Storage Technologies

(FAST) (2016), pp. 133–148.

[57] Luo, C., and Carey, M. J. LSM-based Storage Techniques: A Survey.

arXiv:1812.07527v3 (2019).

[58] O’Neil, P. E., Cheng, E., Gawlick, D., and O’Neil, E. J. The log-

structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–

385.

[59] Peng, Y., Guo, J., Li, F., Qian, W., and Zhou, A. Persistent bloom filter:

Membership testing for the entire history. In Proceedings of the 2018

International Conference on Management of Data (2018), pp. 1037–1052.

[60] Pirza, P., Tatemura, J., Po, O., and Hacigumus, H. Performance

Evaluation of Range Queries in Key Value Stores. J Grid Computing

(2012).

[61] Raju, P., Kadekodi, R., Chidambaram, V., and Abraham, I. Peb-

blesDB: Building Key-Value Stores using Fragmented Log-Structured

Merge Trees. In Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP) (2017), pp. 497–514.

[62] Ren, K., Zheng, Q., Arulraj, J., and Gibson, G. SlimDB: A Space-

Efficient Key-Value Storage Engine For Semi-Sorted Data. Proceedings

of the VLDB Endowment 10, 13 (2017), 2037–2048.

[63] Sears, R., Callaghan, M., and Brewer, E. Rose: Compressed, log-

structured replication. 526–537.

[64] Sears, R., and Ramakrishnan, R. bLSM: A General Purpose Log Struc-

tured Merge Tree. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (2012), pp. 217–228.

[65] Shetty, P., Spillane, R. P., Malpani, R., Andrews, B., Seyster, J., and

Zadok, E. Building Workload-Independent Storage with VT-trees. In

Proceedings of the USENIX Conference on File and Storage Technologies

(FAST) (2013), pp. 17–30.

[66] Stanley, R. P. Catalan numbers. Cambridge University Press, 2015.

[67] Thonangi, R., and Yang, J. On Log-Structured Merge for Solid-State

Drives. In Proceedings of the IEEE International Conference on Data

Engineering (ICDE) (2017), pp. 683–694.

[68] Van Kreveld, M., Schwarzkopf, O., de Berg, M., and Overmars, M.

Computational geometry algorithms and applications. Springer, 2000.

[69] Vincon, T., Hardock, S., Riegger, C., Oppermann, J., Koch, A., and

Petrov, I. Noftl-kv: Tackling write-amplification on kv-stores with

native storage management.

[70] Wei, Z., Luo, G., Yi, K., Du, X., and Wen, J. R. Persistent Data Sketch-

ing. In ACM SIGMOD (2015).

[71] WiredTiger. Source Code. https://github.com/wiredtiger/wiredtiger .

[72] Wu, X., Xu, Y., Shao, Z., and Jiang, S. LSM-trie: An LSM-tree-based

Ultra-Large Key-Value Store for Small Data Items. In Proceedings of

the USENIX Annual Technical Conference (ATC) (2015), pp. 71–82.

[73] Yahoo. bLSM: Read-and latency-optimized log structured merge tree.

https://github.com/sears/bLSM (2016).

[74] Zhang, Y., Li, Y., Guo, F., Li, C., and Xu, Y. ElasticBF: Fine-grained

and Elastic Bloom Filter Towards Efficient Read for LSM-tree-based

KV Stores. In Proceedings of the USENIX Conference on Hot Topics in

Storage and File Systems (HotStorage) (2018).

	Abstract
	1 Introduction
	2 Rosetta
	2.1 Constructing Rosetta for LSM-tree Runs
	2.2 Range and Point Queries with Rosetta
	2.3 FPR Optimization Through Memory Allocation
	2.4 FPR Optimization Through Further Probe Time Sacrifice

	3 Theoretical Insights
	3.1 Space Complexity is Near-optimal
	3.2 Computational Complexity is Low

	4 Integrating Range Filters to An LSM-Based Key-Value Store
	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

