
Cardinality Estimation Adaptive Cuckoo Filters
(CE-ACF): Approximate Membership Check and
Distinct Query Count for High-Speed Network

Monitoring
Pedro Reviriego, Jim Apple, Alvaro Alonso, Otmar Ertl and Niv Dayan

Abstract—In network monitoring applications, it is often ben-
eficial to employ a fast approximate set-membership filter to
check if a given packet belongs to a monitored flow. Recent
adaptive filter designs, such as the Adaptive Cuckoo Filter, are
especially promising for such use cases as they adapt fingerprints
to eliminate recurring false positives. In many traffic monitoring
applications, it is also of interest to know the number of
distinct flows that traverse a link or the number of nodes that
are sending traffic. This is commonly done using cardinality
estimation sketches. Therefore, on a given switch or network
device, the same packets are typically processed using both a
filter and a cardinality estimator. Having to process each packet
with two independent data structures adds complexity to the
implementation and limits performance.

This paper shows that adaptive cuckoo filters can also be used
to estimate the number of distinct negative elements queried on
the filter. In flow monitoring, those distinct queries correspond
to distinct flows. This is interesting as we get the cardinality
estimation for free as part of the normal adaptive filter’s
operation. We provide (1) a theoretical analysis, (2) simulation
results, and (3) an evaluation with real packet traces to show
that adaptive cuckoo filters can accurately estimate a wide range
of cardinalities in practical scenarios.

Index Terms—Flow monitoring, Cardinality Estimation, Ap-
proximate Membership Checking, Adaptive Cuckoo Filters.

I. INTRODUCTION

In many networking applications, there is a need to check
whether an element belongs to a set. For example, each packet
received by a switch or a router has to be checked against a
potentially large routing table to determine the best matching
entry (i.e. the longest matching prefix for IP and the exact
matching destination MAC address for Ethernet). In network
monitoring, it is of interest to track subsets of the flows1

that traverse a link at a given time. This is done for example

P. Reviriego is with Universidad Politécnica de Madrid, Av. Complutense
30, Madrid, Spain. Email: pedro.reviriego@upm.es.
J. Apple, Email: jbapple@jbapple.com.
A. Alonso is with Universidad Politécnica de Madrid, Av. Complutense 30,
Madrid, Spain. Email: alvaro.alonso@upm.es.
Otmar Ertl is affiliated with Dynatrace Research, Linz, Austria. Email:
otmar.ertl@dynatrace.com.
N. Dayan is with University of Toronto, Canada,
Email:nivdayan@cs.toronto.edu.

1A flow is defined as a group of packets that have the same 5-tuple
formed by the source and destination IP addresses and ports and the protocol
used. This typically corresponds to an exchange of information between two
endpoints.

to count the number of bytes or packets belonging to flows
with certain characteristics (e.g., subject to significant traffic
or originating in a given set of IP addresses [1]). Determining
set membership can be done by storing the full keys in a
hash table [2],[3], yet this can be costly in terms of memory
footprint and bandwidth.

Switching ASICs have a limited amount of on-chip memory
(e.g. SRAM) that is fast and a much larger external memory
(e.g. DRAM) that is slower and has bandwidth limitations [4].
At the same time, each key (i.e., a 5-tuple) consists of 104
and 296 bits in IPv4 and IPv6, respectively. Hence, storing a
hash table with the full keys on-chip is too costly in terms of
memory. On the other hand, storing it in the slower external
memory and checking it for every packet (including ones that
are not being tracked) can create a performance bottleneck.
This problem is also commonly found in database applications,
where the keys that identify data entries are often too large and
numerous to be stored and quickly checked against in faster
memory (i.e., in this case, DRAM). On the other hand, having
to search storage (i.e., disk or SSD) for each queried key can
lead to a performance bottleneck [5], [6], [7], [8].

A common solution to this problem is to first perform a
quick approximate check if the element is in the set [9].
Only on a positive outcome, a full check for the existence
of the key in external memory is needed. Hence, when the
application queries for non-existing keys, many accesses to
external memory are avoided [10],[11]. This significantly
alleviates the bottleneck on the external memory interface and
reduces the use of on-chip memory. This quick approximate
membership check is implemented with probabilistic data
structures commonly referred to as filters. Many different types
of filters have been proposed over the years from the classical
Bloom filter [12] to the more recent cuckoo [13], xor [14],
quotient [15], [16], [17], and ribbon [18] filters. These filters
cannot return false negatives but do return false positives.
Therefore, they can be used to perform a fast and low-cost
check when many queries are negative to safely discard them
from further processing [10]. The probability of a false positive
depends on the amount of memory allocated to the filter and
the number of elements it stores. It can typically be estimated
analytically. The different filters offer different trade-offs in
terms of their false positive probability, performance, and
memory footprint, among other features [19].

Recently, adaptive filters have been proposed to react to a



false positive when querying for some element x by modifying
the filter such that subsequent queries for x return a negative
[20]. Such adaptation is useful in skewed query distributions,
whereby the same key may be repeatedly queried for and
result in a false positive each time. In flow processing, for
instance, each flow consists of many packets, and it is therefore
desirable to prevent future false positives on the rest of the
packets once the first false positive has occurred. Adaptive
filters based on quotient [21], Bloom [22] and cuckoo filters
[23] have been proposed and shown to dramatically reduce
the false positive rate in packet processing applications and
beyond.

In network monitoring, another feature that is of interest
is knowing the number of distinct flows on a link or the
number of distinct active nodes in a network [24],[25]. This
is useful, for example, in detecting early Distributed Denial of
Service Attacks (DDoS) or other anomalies in the traffic [26].
Similarly, in database workload monitoring, it is desirable to
measure the size of the set of distinct queries. This is useful
not only for security and anomaly detection [27] but also for
deriving business insight. For instance, in online search, it is
desirable to monitor the number of distinct search terms to
gauge user behavior over time [28].

Computing the exact number of distinct elements on a large
set can be costly in terms of memory and computation. To
reduce the cost, many cardinality estimation algorithms have
been proposed that provide good estimates while using a small
memory footprint and simple operations [29]. For example,
the HyperLogLog (HLL) estimator is widely used in both
computing [28] and networking applications [30] and can
provide estimates that deviate by less than 1% from the real
value using only a few kilobytes of memory [31]. Cardinality
estimators typically hash each key to an array of approximate
counters, which are used to compute the cardinality estimate.

Overall, we observe that many network devices have to
apply 1) approximate membership checking and 2) cardinality
estimation on the same set of packets. If independent data
structures are used for each function, each packet has to
be processed twice. Furthermore, enough memory has to
be allocated to both data structures to provide low error
guarantees. This poses a challenge for high-speed switches that
have limited on-chip memory and have to process hundreds
of millions of packets per second [4]. For such applications,
reducing the number of memory accesses needed per packet
and the memory footprint is highly desirable.

This paper shows that carefully configured adaptive cuckoo
filters can surprisingly be used to estimate the cardinality of
the negative elements queried on the filter as part of their
normal operation. In particular, a cardinality estimate can be
computed from the contents of the filter without introducing
any modification to its structure, memory footprint, or op-
erations. The cardinality estimate is accurate except for very
small or very large values, thus covering the cardinality values
of many practical use cases. This means that adaptive cuckoo
filters provide cardinality estimation for free. This paper shows
how to derive cardinality estimations from an adaptive cuckoo
filter and evaluate the accuracy of the results. Specifically, we
make the following contributions:

1) Showing that the contents of adaptive cuckoo filters
in some configurations contain information about the
cardinality of the set of negative queries done on the filter.

2) Presenting a cardinality estimator that uses the filter
contents to estimate cardinality.

3) Analyzing theoretically the proposed filter-based cardi-
nality estimator.

4) Evaluating by simulation the proposed filter-based cardi-
nality estimator.

5) Discussing how cardinality estimation may also be im-
plemented in other adaptive filters.

The rest of the paper is organized as follows. Section
II provides the background on adaptive cuckoo filters and
cardinality estimators. The proposed cardinality estimation
approach using an adaptive cuckoo filter is presented and
analyzed in section III and evaluated using simulation in
section IV. We provide a guideline for how to generalize the
approach to other adaptive filters in section V.

II. PRELIMINARIES

This section briefly describes adaptive cuckoo filters and
discusses existing cardinality estimation algorithms.

A. Adaptive cuckoo filters (ACFs)

In many applications for which approximate membership
checking is used, the workload is skewed with a few ele-
ments being checked repeatedly. In networking, for instance,
a significant part of the traffic is concentrated on a few flows
[32]. This means that when a false positive occurs for one of
those frequently checked elements, many more false positives
are likely to follow as subsequent checks are made to the
same element. This has led to the development of adaptive
filters [20] such as the adaptive cuckoo filter [23]. Such filters,
upon detecting a false positive, adapt their contents so that
future queries to the same element do not result in more false
positives.

An adaptive cuckoo filter stores a fingerprint for each key
within a cuckoo filter in fast memory while storing the full
keys within a cuckoo hash table in slower memory. The cuckoo
filter and cuckoo hash table have the same number of buckets
and cells per bucket, and there is a one-to-one correspondence
between their contents: if cell j within bucket i of the cuckoo
filter stores a fingerprint for key x, then cell j within bucket i
of the cuckoo hash table stores the full key x. Insertions and
removals are done using cuckoo hashing in the filter, while full
keys are moved in the cuckoo hash table to mirror the cuckoo
filter’s contents. This mirrored design allows to retrieve the key
associated with any fingerprint. When a false positive occurs,
the full key associated with the falsely matching fingerprint is
retrieved from the cuckoo hash table, and an alternative hash
function is used to generate a new fingerprint for it. The filter
maintains some extra metadata to record which hash function
was used to generate each fingerprint. During a query, this
allows comparing a key in question to a fingerprint using the
correct hash function. After adapting a fingerprint, it is very
unlikely that the new fingerprint will still match the queried
key after a different hash function is applied. In this way,

2



Fig. 1. Illustration of the four table ACF configuration with one bit fingerprint selector. A lookup for element x is being done on the ACF.
The four hash functions h1,h2,h3,h4 are computed for x and those positions are read on each table respectively. Then the selector bit s is
used to select the fingerprint fp0(x) or fp1(x) to use in the comparison with the fingerprint stored on each table. The entry on the third
table will match the fingerprint and subsequently the main tables will be accessed. In this case x is stored in the main tables and thus is a
true positive.

adaptive cuckoo filters eliminate recurring false positives for
frequently queried keys.

Adaptive cuckoo filters are a natural fit for flow monitoring
as the full key must be retrieved whenever a positive occurs in
the filter. Hence, the overhead of retrieving the full key from
slower memory in order to adapt a fingerprint does not con-
stitute additional overhead. Furthermore, in flow monitoring
and many other networking applications, the size of each full
key is uniform (e.g., a 5-tuple) and so the keys align perfectly
within the cells of the cuckoo hash table. Finally, an additional
benefit is that cuckoo hashing is widely used in networking
applications and implementable in hardware [3].

Adaptive Cuckoo filters are also a good match for modern
database applications. For example, recent systems such as
Aerospike [33] and FASTER [34] store data in a log-structured
manner in storage (e.g., disk or flash), and they index the lo-
cations of data entries using a space-efficient filter in memory
(e.g., DRAM). This filter contains a fingerprint for each entry
and a pointer to the location for the entry in storage. Hence,
in case of a positive fingerprint match, a query follows the
pointer to storage to check if it points to the target entry.
In this context, mirroring is unnecessary as the pointers to
storage allow retrieving the original key for a falsely matching
fingerprint so that it can be adapted. Since databases are often

subject to heavy-tailed query distributions, having the filter
adapt to remove recurring false positives reduces tail latency.

Two adaptive cuckoo filter variants have been proposed. In
the first one, the filter consists of two sub-tables and each
bucket contains four cells. In the second design, the filter
consists of four sub-tables and each bucket contains one cell
[23]. In the first configuration, a different hash function is used
for each of the cells and adaptation is implemented by moving
elements from one cell to another within the same bucket.
In the second design, additional metadata in the form of one
or more selector bits record which hash function generated
each fingerprint. When a false positive occurs, the value of
the selector bits is modified to reflect the new hash function
being used.

In this paper, only the four-table adaptive cuckoo filter con-
figuration2 is used as our cardinality estimation method uses
the selector bits that are only applicable to this configuration.
We illustrate it in Figure 1. It is composed of the main cuckoo
hash tables (top) that store the full keys and the filter itself
(bottom). Both of these components are partitioned into four

2It may seem that this configuration has worse false positive probability
than the two-table configuration, as it requires selector bits for adaptation.
However, the false positive probability when no adaptation is used is lower
(approximately half) in the four table configuration, so when using one selector
bit both configurations have similar performance.

3



sub-tables, and the cuckoo hash table mirrors the contents of
the cuckoo filter. Each sub-table is accessed using a different
hash function hi() in the filter. We denote the number of
selector bits per cell as sb. Each cell of the filter stores a
selector value s and the fingerprint fps(z) of an element z
is computed using the hash function that corresponds to the
selector value s.

To search for key x in the filter, positions hi(x) are read
and the stored fingerprints are compared with fps(x) using
the value of s stored on each position. If there is a match,
a positive is returned. Otherwise, the result of the check is
negative. Figure 1 illustrates the mappings for element x that
would match on the third table of the filter. If the filter returns
a positive, the cuckoo hash table is checked. If the key is not
found, then a false positive is detected. To prevent it from
recurring, the value of s and the fingerprint are changed in
the filter for that key.

The false positive probability for a non-existing key that has
not been queried before can be approximated by d·o

2f
where

d is the number of tables, o the filter occupancy, and f the
fingerprint length in bits. This is the same as for the plain
cuckoo filter. In contrast, the false positive rate on a set of
recurring queries to non-existing keys is lower as the filter
will adapt to remove false positives when they are detected
[23].

When inserting a key, we may find that the positions it
maps to on the four tables are already occupied. When that
occurs, one of the stored elements is displaced to one of its
three alternative locations. This process continues recursively
until an empty cell is found as in cuckoo hashing. In the ACF,
the movements are done in both the filter and the full cuckoo
hash tables to keep the one to one relationship between cells
in both data structures. This enables the adaptive cuckoo filter
to reach an occupancy of 95% with very high probability. In
networking applications, the number of insertions is typically
much lower than the number of queries. For example, in flow
monitoring, the number of insertions is equal to the number
of flows being monitored. In contrast, the number of queries
is equal to the number of packets across all flows that traverse
the link. Hence, the number of queries is typically several
orders of magnitude larger than the number of insertions. For
this reason, swapping entries across buckets to find space has
a comparatively lower overall overhead, and the performance
bottleneck tends to be querying.

For a ACF with four sub-tables, the best performance on
real packet traces is obtained when using a single selector bit
[23]. Interestingly, the proposed cardinality estimation only
is applicable to a single selector bit as will be discussed in
section III. Therefore, in the rest of the paper we also assume
that a single selector bit sb = 1 is used. In this case, two
hash functions are used and thus two different fingerprints
are supported for each key. In this case, the selector bit can
be changed from 0 to 1 or from 1 to 0. Note that as many
queries are processed, several false positives can occur on a
cell so that the value of the selector can switch back and forth.
This configuration has a similar performance to that of the two
table configurations when evaluated using packet traces. We
refer the reader to the original ACF paper [23] for further

details.

B. Cardinality estimation algorithms
Estimating the number of distinct elements or cardinality

of a set is needed in many computing [28] and networking
applications [30]. In network monitoring, it is of interest to
know the number of flows on a link, or in an online service
to know the number of unique users. In database systems, it
is often desirable to measure the number of distinct queries
to non-existing keys, e.g., to ascertain whether data is missing
and if so how much. Over the years, many cardinality esti-
mation algorithms have been proposed [29]. These algorithms
can drastically reduce the memory footprint and computing
effort compared to an exact calculation. For example, estimates
that are accurate to a few percent of the exact value over
a wide range of cardinalities are achieved using only a few
kilobytes of memory and hash computations per element. The
general approach used in cardinality estimation algorithms is
to map the elements to pseudo-random values and compute
some statistics on those values. We describe the most popular
cardinality estimation approaches below.

One of the simplest methods is the Linear Probabilistic
Counting Array (LPCA) [35], also known as linear counting
[29]. This approach maps each key to one bit in a bit vector,
setting it from 0 to 1 or keeping it set to 1. Cardinality is
estimated based on the number of ones in the array. An LPCA
is simple to implement. To achieve a good accuracy, however,
some knowledge of the expected maximum cardinality is
needed. Furthermore, the memory requirement is linear in the
number of keys. This is a limitation when memory is scarce
and the cardinality can take large values.

This has led to the development of more sophisticated
algorithms that require a sublinear or even constant memory
size for practical cardinality values. The k minimum values
sketch [36],[37] maps elements to hash values using a hash
function and keeps the k minimum hash values seen in the
stream of data. Cardinality is estimated based on the largest
of the k hash values seen so far. This means that the memory
footprint is independent of the number of elements in the set.

The HyperLogLog [31] and its predecessors (e.g., the
LogLog [38]) map each element to multiple slots in an array
of counters. Each counter stores the maximum number of
leading zeroes across all hashes that have been mapped to
it. Such designs significantly reduce the memory requirement.
The HyperLogLog can estimate cardinality values for up to
billions of elements using a constant array size with five bit
counters. As a result, HyperLogLog is widely used in com-
puting [28] and networking [30] applications. HyperLogLog
has been implemented, for instance, in programmable data
planes using P4 [39], [40] and is used by most major cloud
providers. HyperLogLog is considered the state-of-the-art for
cardinality estimation when reducing the memory footprint is
the priority. In the rest of the paper, HyperLogLog is used as
the baseline for evaluating our proposed CE-ACF in terms of
cardinality estimation. Comparing against simpler algorithms
such as LPCAs would show larger benefits. By comparing to
HyperLogLog, the results presented in the paper represent a
lower bound in terms of memory savings.

4



Recently, the use of machine learning has also been pro-
posed for cardinality estimation, but it remains to be seen if
it will become as widely used and achieves the accuracy and
cost of existing solutions [41],[42].

III. CARDINALITY ESTIMATION WITH ADAPTIVE CUCKOO
FILTERS (CE-ACF)

This section first describes the cardinality estimation prob-
lem and the intuition of why adaptive cuckoo filters can be
used to address it. Then, the proposed filter-based cardinality
estimation algorithm is presented in detail and analyzed theo-
retically for the single selector bit sb configuration. For larger
values of sb, it is shown that the adaptation state depends
on the number of elements and not only on the number of
distinct elements and therefore the values of the selector bits
cannot be used for cardinality estimation. Finally, we discuss
(1) the potential of integrating the cardinality estimation with
the filter versus the use of independent data structures, and
(2) the implementation of the proposed scheme in different
hardware platforms. The terms used throughout the paper are
summarized in Table I.

A. Problem statement and intuition

Consider a multiset of elements S that is queried on an
adaptive cuckoo filter. Let N be the subset of S formed by
elements that have not been inserted into the filter. In this
setting, we want to estimate the cardinality C (i.e., the number
of distinct elements) of the set N . This corresponds to a
scenario in which an adaptive cuckoo filter is used to monitor
a small fraction of the flows (that are thus inserted into the
filter) that traverse the link (e.g., originating in a set of source
IP addresses) and we also want to know the total number
of active flows on the link. In this case, S corresponds to
all packets flowing through the link while N corresponds to
packets belonging to non-monitored flows. Since the number
of monitored flows is known3, we want to estimate the number
of flows in N 4.

The intuition for why an adaptive filter can estimate car-
dinality is that the filter state contains information about the
number of distinct negative elements that had been queried
for. For example, consider a cell in the filter that stores an f
bit fingerprint and one selection bit (initialized to zero) that
determines the hash function used to compute the fingerprint.
If no negative elements that map to this cell are queried, the
selection bit would be zero. However, if one negative element
is queried for, there would be approximately a probability
of 1

2f
that it matches the stored fingerprint. In this case,

adaptation would be triggered setting the selection bit to one.
Note that querying again for the same element will not change
the state of the filter. As more distinct negative elements are
queried, the probability of adaptation increases. Therefore,

3Note that there is no need to estimate the number of elements that have
been inserted into the filter as we can easily compute the exact value by just
counting the number of flow insertions.

4Note that typically when a filter is used, the number of negative elements
is larger than the number of positive elements, as this is the case where filters
eliminate many external memory accesses and are therefore attractive.

the values of the selector bits contain information about the
number of distinct negative elements queried on the filter. A
larger number of cells that have adapted would correspond to
a larger cardinality.

B. Estimating the cardinality

Let us consider an adaptive cuckoo filter with d = 4 tables,
each consisting of b buckets with one cell per bucket. Each
cell is formed by a selector bit s and a fingerprint fps(x) of f
bits. The filter is first loaded with a set of elements T to reach
an occupancy of o. Finally, a set of S elements is queried on
the filter of which C are distinct negative elements belonging
to the set N . At the end of this process, the probability that a
fingerprint with a given cell has been adapted can be estimated
as follows. The number of distinct elements that map to each
cell can be approximated by C

b , which would typically be
much larger than one. An example of the mappings to one
of the cells is illustrated in Figure 2. In this case, adaptation
is triggered when querying for element y. The more queries
to non-existing elements that map to this cell, the larger is
the probability of adaptation. In this case, no other negative
elements match fp1(x), so the cell’s selector bits will store
s = 1.

On average, the expected number of elements in N that
match a fingerprint in a given cell is C

b·2f . When using the
Poisson approximation [31], which assumes that the number
of distinct elements is Poisson distributed, the probability
of having k distinct elements that match the initially stored
fingerprint fpi(x) can be modeled as:

Pi(k) ≈
( C
b·2f )

k

k!
· e−

C

b·2f (1)

The probability that at least one element y ∈ N matches a
fingerprint fp0(x) in a given cell and triggers an adaptation
is approximated as 1− Pi(0) in Equation 2.

Padapt ≈ 1− e−
C

b·2f (2)

Let us consider a cell for which there is a matching element
y0 for fp0(x) and another matching element y1 for fp1(x).
In this case, the final value of s depends on which of the two
elements is queried last on the filter. If the last one is y0, then
s = 1. Conversely, if it is y1, then s = 0. This is illustrated
in Figure 3 for different sequences of queries to elements y0
and y1.

As a result, the probability of having each value of s would
be approximately 0.5. When there are l0 and l1 matching
elements (not necessarily distinct) for the fingerprints fp0(x)
and fp1(x), respectively, the probability of each value of s
would be different, being larger for s = 1 when l0 > l1. How-
ever, the probability of having l0 and l1 matching elements to
fp0(x) and fp1(x), respectively, is the same as that of having
matching l1 and l0 elements to fp0(x) and fp1(x), respec-
tively. Therefore, considering both cases, the probabilities of
having s = 0 and s = 1 are both approximately 0.5. The only
exception to this analysis is when both l0, l1 are zero. In this
case, s = 0. This further implies that the number of distinct
elements mapping to those fingerprints must be zero as well.

5



TABLE I
SUMMARY OF NOTATION

Symbol Meaning
b Number of buckets per table in the filter

d = 4 Number of tables in the filter
hi Hash function for table i
o Occupancy of the filter (fraction)
f Number of fingerprint bits

fps Fingerprint function for selector bit value s
sb Number of selector bits
s Value of the selector bits
T Set of elements stored in the filter
S Elements queried on the filter

N ⊆ S Negative elements queried on the filter
C Cardinality of the negative elements queried on the filter

Pi(j) Probability of having j distinct negative elements on N that match fi(x) for element x stored in a particular cell
l0, l1 Number of elements matching the fingerprint when the selector bit is 0,1 in a given cell.
p1 Probability that the selector bit takes a value of 1 in a given the cell after a set of queries to the filter
p̂1 Fraction of the selector bits with a value of 1 in the cells of the filter after a set of queries to the filter
M Number of counters in the HLL estimator
c Number of counter bits in each cell of the HLL estimator

Fig. 2. Illustration of a cell that stores the fingerprint of element x (top) and to which negative elements v, w, y, z map to (middle). Element
y has the same fingerprint as x when the selector bit is zero (s = 0). Therefore, after y is queried (bottom right), the cell is adapted by
setting s = 1 and the fingerprint to 231, for which there is no matching fingerprint on v, w, y, z.

Therefore, P (l0 = 0∧ l1 = 0) = P0(0) ·P1(0) ≈ e−
2·C
b·2f using

equation 1 and the probability p1 = P (s = 1) that a selector
bit is set can be approximated by

p1 =
1

2
· (1− P (l0 = 0 ∧ l1 = 0)) ≈ 1

2
· (1− e−

2·C
b·2f ) (3)

By solving Equation 3 for C and estimating p1 as the
fraction of selector bits that are set to 1 (denoted as p̂1), we
obtain Equation 4.

Ĉ := −b · 2f−1 · ln(1− 2 · p̂1) (4)

We obtain a value for the parameter p̂1 using Equation 5
by traversing the filter, counting the number of occupied cells
with s = 1, and dividing by the number of occupied cells
d · b · o.

p̂1 :=
number of occupied cells with s = 1

d · b · o
(5)

This analysis is similar to the one of the Odd Sketch [43],
which estimates similarity between sets rather than cardinality.
Indeed, each cell of the filter is equivalent to a position of
an Odd Sketch except that only approximately 1

2f
of the

elements change the selector bit. Just as for the Odd Sketch,
the approximations derived are not valid when p1 approaches
0.5 (i.e., for very large cardinalities). Since p1 approaches
0.5 as C → ∞ and the estimator is only defined as long
as p̂1 < 0.5, our estimation approach fails for very large
cardinalities C. At the same time, for very small cardinalities,
it is unlikely that any selector bit would be set. A large
estimation error is therefore also expected also in this case.
The next subsection analyzes the estimation error as a function
of the cardinality.

C. Accuracy

The estimator p̂1 corresponds to an estimator of the proba-
bility of a binomial distribution with d · b · o trials for which

6



Fig. 3. Illustration of a cell that stores the fingerprint of element x and to which two negative elements y0 and y1 map to. Element y0 has
the same fingerprint as x when the selector bit is zero (s = 0) and y1 has the same fingerprint as x when the selector bit is one (s = 1).
Therefore, the value of the selector bit depends on the sequence of queries as shown in the figure. The last element queried of the pair y0
and y1 determines the final value of s for the given cell.

the variance is known to be

Var(p̂1) =
p1 · (1− p1)

d · b · o
≈ 1− e−

4·C
b·2f

4 · d · b · o
. (6)

Using the delta method [44], the variance of Ĉ can be
approximated by Equation 7.

Var(Ĉ) ≈ Var(p̂1)

(
dp1
dC

)−2

≈ 1− e−
4·C
b·2f

4 · d · b · o

(
e−

2C

b2f

b2f

)−2

=
4f−1 · b · (e

4C

b2f − 1)

d · o
. (7)

As a consequence, the expected relative standard error (RSE)
is roughly given by

RSE =

√
Var(Ĉ)

C
≈

ϕ
(

C
b2f

)
√
b · d · o

. (8)

with ϕ(x) :=
√
e4x−1
2x . Since the function ϕ(x) is convex and

has its minimum at xmin ≈ 0.398 with ϕ(xmin) ≈ 2.49, the
lowest estimation error is achieved for C ≈ 0.398 · b · 2f
where RSE ≈ 2.49/

√
b · d · o. The values of ϕ(x) are shown

in Figure 4. It can be observed how accuracy degrades as we
move away from xmin ≈ 0.398 to either larger or lower values
(cardinalities).

For x ≪ 1 we can approximate e4x− 1 ≈ 4x and therefore
ϕ(x) ≈ 1√

x
, which yields

RSE ≈
√

2f

d · o · C
for C ≪ b · 2f . (9)

To better understand the accuracy of the proposed estimator,
we compare it with HLL that has an estimation error of
approximately RSE ≈ 1.04/

√
M where M is the number

of counters [31]. This means that on the optimal point,
our estimator has the same accuracy as an HLL with b·d·o

5.73

Fig. 4. The Function ϕ(x). As we move away from the minimum in
either direction, the function grows for both smaller and larger values
of x = C

b2f
.

counters, and the equivalent number of counters decreases
as we move towards smaller or larger cardinalities. This is
illustrated in Figure 5, which shows the number of counters
of an HLL structure that achieves the same estimation error
as our estimator as a function of the cardinality for a filter
with b = 65536, d = 4, f = 8 and 95% occupancy. It can
be seen that our estimator is equivalent to an HLL with more
than 5,000 counters over a large range of cardinality values.

In summary, our estimator achieves a good accuracy unless
the cardinality is too small or too large compared to b ·2f . The
first case is unusual for a filter that is used precisely when the
negative queries are more frequent than the positives such that
the cardinality of the negative queries is typically much larger

7



Fig. 5. Number of counters of an HLL structure with the same
estimation error for a filter with b = 65536, d = 4, f = 8 and
95% occupancy as a function of the cardinality.

than the number of elements stored in the filter. As for the
second case, when the cardinality is very large, the benefits of
adaptation are smaller as there are so many negatives per cell
that the filter keeps adapting and does not reach a state where
false positives can be eliminated. Therefore, our estimator
covers the range of cardinalities in settings on which adaptive
filters are of interest.

D. Applicability to more than one selector bit sb > 1

Although it would seem that similar schemes could be used
to estimate the cardinality for ACFs that use more than one
selector bit sb > 1, that is not the case. The key insight
is that when there are multiple selector bits, their values
depend on the number of elements. Thus sets with the same
distinct count but different numbers of elements would have
different distributions of the selector bit values. This is best
illustrated with an example. Suppose sb = 2 and that we
have a given query set such that there is exactly one query
falsely matching each of the four possible fingerprints (i.e.,
l0 = l1 = l2 = l3 = 1). The probability of having a value
of zero for the selector bits after this particular set has been
queried in the filter would be that of those elements being
queried in the order l0, l1, l2, l3 which is one of twenty-four
possible permutations. Instead, if having the same distinct
count, the number of elements is l0 = l1 = l2 = l3 = 1000
or any large number, the probability would be closer to one-
fourth, and as the number of elements is increased when
the number of distinct elements is kept constant, all selector
states will become asymptotically equally likely. Therefore,
the adaptation state depends not only on the distinct count
of the elements but also on the number of elements and
thus cannot be used to provide a meaningful estimator of the
cardinality. This means that cardinality estimation can only be
implemented when sb = 1.

E. Benefits of Integrating Cardinality Estimation on the Filter

Table II models the speed of queries and cardinality esti-
mations in terms of memory accesses across two baselines:
an independent filter and Hyperloglog versus our integrated
approach5. Integration reduces the cost of queries (which are
the most frequent operations in our target application) as no
Hyperloglog needs to be accessed. On the other hand, the cost
of cardinality estimation is higher as all the filter cells have to
be read compared to reading all the counters of a Hyperloglog.
However, cardinality estimates are typically computed less
frequently. Flow monitoring, for example, entails performing
tens of millions of queries per second while the number of
distinct flows may be estimated and reported only once or
a few times per second. Therefore, the cost of computing
the cardinality estimate is not an issue. The bottleneck is
rather the query path. The last row of Table II further shows
that our integrated approach saves memory as there is no
Hyperloglog. In summary, the integration has benefits in terms
of memory bandwidth and memory footprint compared to
using an independent filter and cardinality estimator.

TABLE II
COMPARISON OF INTEGRATED AND INDEPENDENT FILTERING AND

CARDINALITY ESTIMATION. A FILTER WITH d TABLES OF b BUCKETS OF
SIZE f AND A CARDINALITY ESTIMATOR WITH M COUNTERS OF SIZE c

ARE USED IN THE COMPARISON

Parameter Independent Integrated
Memory Accesses per Query d+ 1 d

Memory Accesses per Estimate M b · d
Memory Footprint (bits) b · d · f +M · c b · d · f

F. Implementation on Hardware Platforms

The proposed CE-ACF is not tied to any particular imple-
mentation platform, though additional benefits can arise on
certain platforms. For example, on programmable data planes,
implementing HyperLogLog requires additional Ternary Con-
tent Addressable Memory (TCAM) blocks to count the number
of leading zeros. This entails additional complexity [39],
which our design obviates as it can perform cardinality es-
timation without the use of a Hyperloglog.

Furthermore, our design is well aligned with the increasing
use of cuckoo hashing in modern switches [2],[3] as it is
also based on cuckoo hashing. The implementation of cuckoo
hashing in hardware can be done efficiently both in ASICs [3]
and in FPGAs [45]. In P4 programmable switches, swapping
of elements during insertions may introduce a significant
bandwidth overhead. However, recent works suggest that new
higher level approaches to code the programs can reduce the
swapping overhead so that its impact on the switch bandwidth
is marginal [46]. Even without those optimizations, cuckoo
filter variants have been successfully implemented in P4
programmable data planes [47], and so our design is applicable
for such platforms as well.

5We assume the filter to be also an ACF to facilitate the comparison.

8



IV. EVALUATION

The proposed scheme has been implemented6 and tested in
different configurations both with randomly generated data and
with packet traces. The use of random data enables us to ex-
plore how different parameters affect the cardinality estimation
while the packet traces are used as a case study to validate the
proposed scheme for a flow monitoring application. Finally,
the proposed CE-ACF is compared to an alternative solution
using an ACF for filtering and a HyperLogLog for cardinality
estimation.

A. Synthetic data

In the first experiment, filters with d = 4, b = 1024, f =
7, 11, s = 1 have been created and filled up to 95% occupancy.
Then, a set of N elements taken randomly and uniformly
from a set of C unique elements is queried on the filter.
Finally, cardinality is estimated using equation 4. This process
is repeated across 1000 experimental runs. The mean and
relative standard error are then computed. This has been done
for different values of C. In each run, each negative element
is queried on average five times7. The results are shown in
Figures 6 and 7. The vertical line in these figures corresponds
to the cardinality for which p1 = 0.4 (i.e., getting close to
0.5 of the cells having a selector bit with a value of one).
These measurements, therefore, mark the start of the range
of cardinalities for which the proposed estimator exhibits
diminishing accuracy. It can be seen that the cardinality
estimate has low relative deviation on the mean so it seems
to have a small bias as discussed in [43]. Figure 7 shows
that the relative standard error is small for a wide range of
cardinality values. Finally, the theoretical estimate is accurate
when the cardinality is below the cardinality that corresponds
to p1 = 0.4 as expected.

The second experiment explores the impact of the filter
size on the accuracy of the estimator. To do so, filters with
d = 4, b = 256, 1024, 4096, f = 7, s = 1 have been created
and filled up to 95% occupancy. Then, the same procedure
as that of the first experiment is carried out. The results are
summarized in Figures 8 and 9. It can be clearly seen that as
b and thus the filter size increases, so does the accuracy of the
estimator as predicted by equation 8.

B. Packet traces

To validate the proposed cardinality estimation in a realistic
flow monitoring scenario, packet traces from CAIDA have
been used. The traces have approximately 33.4, 37.8 and 32.6
million packets and 1,588,650, 1,711,354, 13,459,419 flows
respectively.

Filters with d = 4, b = 1024, f = 10, 12, 14, 16, s = 1
have been constructed for each of the traces and filled with
the first flows of each trace until a 95% occupancy is reached.
Then, all packets on the trace are checked on the filter and

6The code is available at https://github.com/aalonsog/ACF/tree/cestimate/
reverse

7Note that the number of times that elements are queried on the filter should
not affect the cardinality estimate.

the cardinality is estimated based on the final filter state. The
process has been repeated one hundred times using different
hash functions.

The results are presented in Figures 10, 11. It can be
observed that the estimates are accurate for the first two traces
when the fingerprints have at least 12 bits. Instead for the
third trace, 14 bits are needed to get accurate estimates as
it has many more flows. This is consistent with the analysis
presented in the previous section. These results confirm that
the ACF can be used to estimate the cardinality of the negative
elements queried on the filter provided that it is in the range
estimated theoretically in the previous section, which depends
on both b and f .

C. Comparison with alternative solutions

Finally, it is of interest to compare the proposed CE-ACF
with the use of an independent filter and cardinality estimator.
As discussed before, for the filter we use the same ACF and
for the cardinality estimation a HyperLogLog. In more detail,
we use M = 1024 counters of c = 6 bits. The main metrics
for comparison are summarized in Table III. The ACFs have
in both cases four tables of 1024 buckets and fingerprints
of 14 bits. The memory accesses and hash functions are for
negative queries, which are dominant in filter workloads. The
use of the CE-ACF provides significant savings in both the
memory bandwidth needed and the number of hash functions.
The savings in memory footprint are smaller but not negligible.

Additionally, the three packet traces have been processed
using the proposed CE-ACF and an independent ACF and
HLL from Apache DataSketches8. All packets are queried on
the filter and the estimation of the cardinality is run every
second. The samples were run 10 times and the average speed
was taken.9 The run times for each trace are shown in Table
IV. It can be observed that the proposed CE-ACF reduces the
time needed significantly. This confirms that the savings in the
per packet processing when using a single data structure are
much larger than the increase in computing the cardinality
estimates. In summary, these results confirm that the CE-
ACF is attractive for efficient implementation high-speed flow
monitoring applications.

TABLE III
COMPARISON OF THE PROPOSED CE-ACF WITH AN INDEPENDENT ACF

AND HLL FOR DIFFERENT METRICS

Memory accesses Hash functions Memory
Independent ACF and HLL 5 8 68 Kb

Proposed CE-ACF 4 6 61 Kb
Savings 20% 25% 9.1%

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown that adaptive cuckoo filters
can be used to estimate cardinality as part of their normal
operation. In more detail, the values of the selector bit in
the filter contain information on the cardinality of the set

8https://datasketches.apache.org/
9The experiments were run on an Intel Core i7-7800X running Ubuntu

18.04.6 LTS and Clang version 16.0.0.

9

https://github.com/aalonsog/ACF/tree/cestimate/reverse
https://github.com/aalonsog/ACF/tree/cestimate/reverse


Fig. 6. Results for the first experiment in terms of relative deviation from the true cardinality value of the mean estimate over all runs for
f = 7 (left) and f = 11 (right). The cardinality that corresponds to p1 = 0.4 is also shown for reference as a dotted vertical line. The
estimate is much worse when that value is exceeded.

Fig. 7. Results for the first experiment in terms of the relative standard error (the relative standard error given by equation 8 is also shown
as well as the cardinality that corresponds to p1 = 0.4 is also shown for reference as a dotted vertical line. The estimate is much worse
when that value is exceeded.

Fig. 8. Results for the second experiment in terms of relative deviation from the true cardinality value of the mean estimate over all runs
for b = 256 (left), b = 1024 (middle) and b = 4096 (right).

10



Fig. 9. Results for the second experiment in terms of the relative standard error (the theoretical value of the relative standard error given by
equation 8 is also shown as well as the cardinality that corresponds to p1 = 0.4 for reference) for b = 256 (left), b = 1024 (middle) and
b = 4096 (right).

Fig. 10. Results for the CAIDA traces in terms of the average of the cardinality estimates. The true cardinality is also shown for reference.
Trace 1 (left), Trace 2 (middle) and Trace 3 (right).

Fig. 11. Results for the CAIDA traces in terms of the relative standard error (the theoretical value of the relative standard error given by
equation 8 is also shown). Trace 1 (left), Trace 2 (middle) and Trace 3 (right).

TABLE IV
TIME (IN SECONDS) NEEDED TO PROCESS THE PACKET TRACES WITH THE

CE-ACF VS AN INDEPENDENT ACF AND HLL.

Trace ACF+HLL CE-ACF Savings
Trace 1 1.82 1.53 15.9%
Trace 2 1.76 1.44 18.1%
Trace 3 1.96 1.68 14.3%

of negative elements that have been checked in the filter.
A cardinality estimator that uses that information has been
proposed, analyzed, and evaluated, showing that it can provide
accurate estimates over a wide range of cardinality values.
This is of interest for applications on which both approximate
membership check and cardinality estimation are needed as

both functions can be implemented in a single data structure,
reducing memory and computing overheads.

The intuition that led to this paper, namely that the state of
an adaptive cuckoo filter can be used to estimate cardinality
of the negative elements queried on the filter, is applicable
to adaptive filters in general. This is because an adaptation
happens when a false positive is detected and removed, and
thus adaptations can be used to estimate the number of distinct
false positives and thus of elements. Therefore, deriving cardi-
nality estimators for other adaptive filters like the Telescoping
[21] or adaptive one memory access Bloom filters [22] is an
interesting direction for future work.

11



VI. ACKNOWLEDGEMENTS

Pedro Reviriego would like to acknowledge the support
of the ACHILLES project PID2019-104207RB-I00 and the
6G-INTEGRATION-3 project TSI-063000-2021-127 funded
by the Spanish Agencia Estatal de Investigacion (AEI)
10.13039/501100011033.

REFERENCES

[1] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[2] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen,
“Scalable, high performance ethernet forwarding with cuckooswitch,”
in Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 97–108. [Online].
Available: https://doi.org/10.1145/2535372.2535379

[3] G. Levy, S. Pontarelli, and P. Reviriego, “Flexible packet matching with
single double cuckoo hash,” IEEE Communications Magazine, vol. 55,
no. 6, pp. 212–217, 2017.

[4] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan, “Tea:
Enabling state-intensive network functions on programmable switches,”
in Proceedings of the Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, archi-
tectures, and protocols for computer communication, 2020, pp. 90–106.

[5] N. Dayan, M. Athanassoulis, and S. Idreos, “Monkey: Optimal Naviga-
ble Key-Value Store,” in ACM SIGMOD, 2017.

[6] N. Dayan and S. Idreos, “Dostoevsky: Better space-time trade-offs for
LSM-tree based key-value stores via adaptive removal of superfluous
merging,” in Proceedings of the 2018 International Conference on
Management of Data, 2018, pp. 505–520.

[7] ——, “The log-structured merge-bush & the wacky continuum,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 449–466.

[8] N. Dayan and M. Twitto, “Chucky: A succinct cuckoo filter for lsm-tree,”
in Proceedings of the 2021 International Conference on Management of
Data, 2021, pp. 365–378.

[9] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest prefix
matching using Bloom filters,” IEEE/ACM Transactions on Networking,
vol. 14, no. 2, pp. 397–409, 2006.

[10] L. Luo, D. Guo, R. T. B. Ma, O. Rottenstreich, and X. Luo, “Optimizing
Bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys and Tutorials, vol. 21, no. 2, pp. 1912–1949, 2019.

[11] S. Pontarelli, P. Reviriego, and M. Mitzenmacher, “EMOMA: Exact
match in one memory access,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 11, pp. 2120–2133, 2018.

[12] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, 1970.

[13] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in ACM CoNEXT, 2014.

[14] T. M. Graf and D. Lemire, “Xor filters: Faster and smaller than bloom
and cuckoo filters,” ACM J. Exp. Algorithmics, vol. 25, Mar. 2020.
[Online]. Available: https://doi.org/10.1145/3376122

[15] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Med-
jedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok, “Don’t thrash:
how to cache your hash on flash,” in 3rd Workshop on Hot Topics in
Storage and File Systems (HotStorage 11), 2011.

[16] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of the 2017
ACM international conference on Management of Data, 2017, pp. 775–
787.

[17] P. Pandey, A. Conway, J. Durie, M. A. Bender, M. Farach-Colton, and
R. Johnson, “Vector quotient filters: Overcoming the time/space trade-
off in filter design,” in Proceedings of the 2021 International Conference
on Management of Data, 2021, pp. 1386–1399.

[18] P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer, “Fast
Succinct Retrieval and Approximate Membership using ribbon,” in 20th
Symposium on Experimental Algorithms (SEA), 2022, best paper award,
full paper at https://arxiv.org/abs/2109.01892.

[19] P. C. Dillinger and S. Walzer, “Ribbon filter: practically smaller than
bloom and xor,” CoRR, vol. abs/2103.02515, 2021. [Online]. Available:
https://arxiv.org/abs/2103.02515

[20] M. A. Bender, M. Farach-Colton, M. Goswami, R. Johnson, S. Mc-
Cauley, and S. Singh, “Bloom filters, adaptivity, and the dictionary
problem,” in IEEE Symposium on Foundations of Computer Science
(FOCS), 2018.

[21] D. J. Lee, S. McCauley, S. Singh, and M. Stein, “Telescoping filter: A
practical adaptive filter,” in ESA, 2021.

[22] P. Reviriego, A. Sánchez-Macián, O. Rottenstreich, and D. Larrabeiti,
“Adaptive one memory access bloom filters,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2022.

[23] M. D. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” in Workshop on Algorithm Engineering and Experiments
(ALENEX), 2018.

[24] L. Zheng, D. Liu, W. Liu, Z. Liu, Z. Li, and T. Wu, “A data streaming
algorithm for detection of superpoints with small memory consumption,”
IEEE Communications Letters, vol. 21, no. 5, pp. 1067–1070, May 2017.

[25] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li, and Y. Ling,
“Cardinality estimation for elephant flows: A compact solution based
on virtual register sharing,” IEEE/ACM Transactions on Networking,
vol. 25, no. 6, pp. 3738–3752, 2017.

[26] D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa, “In-
network volumetric DDoS victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191–1202, 2021.

[27] A. Sallam, D. Fadolalkarim, E. Bertino, and Q. Xiao, “Data and syntax
centric anomaly detection for relational databases,” Wiley interdisci-
plinary reviews: data mining and knowledge discovery, vol. 6, no. 6,
pp. 231–239, 2016.

[28] S. Heule, M. Nunkesser, and A. Hall, “HyperLogLog in Practice:
Algorithmic Engineering of a State of the Art Cardinality estimation
algorithm,” in Proceedings of the 16th International Conference on
Extending Database Technology, ser. EDBT ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 683–692. [Online].
Available: https://doi.org/10.1145/2452376.2452456

[29] H. Harmouch and F. Naumann, “Cardinality estimation: An experimental
survey,” Proc. VLDB Endow., vol. 11, no. 4, p. 499–512, dec 2017.
[Online]. Available: https://doi.org/10.1145/3186728.3164145

[30] M. Kadosh, G. Levy, Y. Shpigelman, O. Shabtai, Y. Piasetzky, and
L. Mula, “Cardinality-based traffic control,” Dec. 1 2022, uS Patent
App. 17/335,312.

[31] P. Flajolet, E. Fusy, O. Gandouet, and et al., “Hyperloglog: The analysis
of a near-optimal cardinality estimation algorithm,” in International
Conference on Analysis of Algorithms (AOFA), 2007.

[32] L. Guo and I. Matta, “The war between mice and elephants,” in Pro-
ceedings Ninth International Conference on Network Protocols. ICNP
2001, 2001, pp. 180–188.

[33] V. Srinivasan, B. Bulkowski, W.-L. Chu, S. Sayyaparaju, A. Gooding,
R. Iyer, A. Shinde, and T. Lopatic, “Aerospike: Architecture of a real-
time operational dbms,” Proc. VLDB Endow., vol. 9, no. 13, pp. 1389–
1400, 2016.

[34] B. Chandramouli, G. Prasaad, D. Kossmann, J. Levandoski, J. Hunter,
and M. Barnett, “Faster: A concurrent key-value store with in-place
updates,” in ACM International Conference on Management of Data
(SIGMOD), 2018.

[35] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208–229, 1990. [Online]. Available:
https://doi.org/10.1145/78922.78925

[36] F. Giroire, “Order statistics and estimating cardinalities of massive data
sets,” Discrete Applied Mathematics, vol. 157, no. 2, pp. 406 – 427,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0166218X08002813

[37] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan,
“Counting Distinct Elements in a Data Stream,” in Proceedings of
the 6th International Workshop on Randomization and Approximation
Techniques, ser. RANDOM ’02. Berlin, Heidelberg: Springer-Verlag,
2002, p. 1–10.

[38] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” in
European Symposium on Algorithms (ESA), 2003.

[39] D. Ding, M. Savi, F. Pederzolli, and D. Siracusa, “INVEST: Flow-based
Traffic Volume Estimation in Data-plane Programmable Networks,” in
2021 IFIP Networking Conference (IFIP Networking), 2021, pp. 1–9.

[40] H. Namkung, D. Kim, Z. Liu, V. Sekar, and P. Steenkiste, “Telemetry
retrieval inaccuracy in programmable switches: Analysis and recommen-
dations,” in Proceedings of the ACM SIGCOMM Symposium on SDN
Research (SOSR), 2021, pp. 176–182.

[41] K. Kim, J. Jung, I. Seo, W.-S. Han, K. Choi, and J. Chong, “Learned
cardinality estimation: An in-depth study,” in Proceedings of the 2022

12

https://doi.org/10.1145/2535372.2535379
https://doi.org/10.1145/3376122
https://arxiv.org/abs/2109.01892
https://arxiv.org/abs/2103.02515
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/3186728.3164145
https://doi.org/10.1145/78922.78925
http://www.sciencedirect.com/science/article/pii/S0166218X08002813
http://www.sciencedirect.com/science/article/pii/S0166218X08002813


International Conference on Management of Data, ser. SIGMOD ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 1214–1227. [Online]. Available: https://doi.org/10.1145/3514221.
3526154

[42] R. Cohen and Y. Nezri, “Cardinality estimation in a virtualized network
device using online machine learning,” IEEE/ACM Transactions on
Networking, vol. 27, no. 5, pp. 2098–2110, 2019.

[43] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for high
similarities using odd sketches,” 04 2014, pp. 109–118.

[44] G. Casella and R. L. Berger, Statistical Inference, 2nd ed. Pacific
Grove, CA: Duxbury, 2002.

[45] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani,
V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda,
F. Huici, and G. Siracusano, “FlowBlaze: Stateful Packet Processing
in Hardware,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 531–548. [Online]. Available: https:
//www.usenix.org/conference/nsdi19/presentation/pontarelli

[46] J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A
Language for Control in the Data Plane,” in Proceedings of the 2021
ACM SIGCOMM 2021 Conference, ser. SIGCOMM ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 731–747.
[Online]. Available: https://doi.org/10.1145/3452296.3472903

[47] Q. Xiao, H. Wang, and G. Pan, “Accurately Identify Time-decaying
Heavy Hitters by Decay-aware Cuckoo Filter along Kicking Path,” in
2022 IEEE/ACM 30th International Symposium on Quality of Service
(IWQoS), 2022, pp. 1–10.

Pedro Reviriego received the M.Sc. and Ph.D.
degrees in telecommunications engineering from the
Technical University of Madrid, Madrid, Spain, in
1994 and 1997, respectively. From 1997 to 2000,
he was an Engineer with Teldat, Madrid, working
on router implementation. In 2000, he joined Mas-
sana to work on the development of 1000BASE-
T transceivers. From 2004 to 2007, he was a
Distinguished Member of Technical Staff with the
LSI Corporation, working on the development of
Ethernet transceivers. From 2007 to 2018 he was

with Nebrija University, from 2018 to 2022 with Universidad Carlos III de
Madrid. He is currently with Universidad Politécnica de Madrid working
on probabilistic data structures, high speed packet processing and machine
learning.

Jim Apple received his M.S. in computer and
information science from the University of Oregon.
His current research interests include hashing and
hashing-based data structures.

Álvaro Alonso received the M.Sc. and Ph.D. de-
grees in telecommunications engineering from the
Universidad Politécnica de Madrid, Spain, in 2013
and 2016, respectively. He is currently an Associate
Professor with Universidad Politécnica de Madrid.
His main research interests are Public Open Data,
Security Management in Smart Context environ-
ments, and Multivideoconferencing Systems.

Otmar Ertl is a Lead Researcher at Dynatrace
Research. He received the Ph.D. degree in technical
sciences from the Vienna University of Technology
in 2010. His current research interests include prob-
abilistic algorithms and data structures.

Niv Dayan is an Assistant Professor at the Univer-
sity of Toronto. Prior to that, he was a Research
Scientist at Pliops and a Postdoc at Harvard. Niv re-
ceived his M.Sc. and Ph.D. from the IT University of
Copenhagen. His current research interests include
the design and analysis of storage engines and their
core data structures.

13

https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1145/3514221.3526154
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://www.usenix.org/conference/nsdi19/presentation/pontarelli
https://doi.org/10.1145/3452296.3472903

	Introduction
	Preliminaries
	Adaptive cuckoo filters (ACFs)
	Cardinality estimation algorithms

	Cardinality Estimation with Adaptive Cuckoo Filters (CE-ACF)
	Problem statement and intuition
	Estimating the cardinality
	Accuracy
	Applicability to more than one selector bit sb > 1
	Benefits of Integrating Cardinality Estimation on the Filter
	Implementation on Hardware Platforms

	Evaluation
	Synthetic data
	Packet traces
	Comparison with alternative solutions

	Conclusion and Future Work
	Acknowledgements
	References
	Biographies
	Pedro Reviriego
	Jim Apple
	Álvaro Alonso
	Otmar Ertl
	Niv Dayan


