
Niv Dayan Research Statement
Scaling Storage Engines for 100x Big Data

Our society is creating and storing exponentially increasing amounts of data. What is often less thought of are
the storage engines that maintain this data and facilitate the extraction of knowledge from it. In the late-2000s, a
new class of storage engines emerged that prioritize the efficiency of ingesting new data. They include Google’s
BigTable, Amazon’s DynamoDB, Facebook’s RocksDB, as well as Apache Cassandra and HBase. These engines
have become indispensable for a wide range of applications, including cloud storage, blockchain, machine learning,
etc. Nevertheless, a lingering problem is that their performance deteriorates with respect to the amount of data they
store. This, in turn, causes applications running on top to have to spend disproportionately more time, energy, and
hardware in order to, say, transact on a blockchain, train a deep learning model, or add a photo to the cloud.

My research allows for such storage engines to function more efficiently as the big data that they store continues
getting bigger. It does this by revisiting an age-old question in computer science: how to scale core dictionary
data structures such that their performance deteriorates as slowly as possible with respect to the data size. The
work constructs mathematical models of how all constituent data structures within a modern storage engine interact
to define the engine’s performance properties. It then uses these models to systematically identify and address
performance bottlenecks. This involves co-designing traditional data structures in novel ways that lead to scalability
improvements, as well as introducing new data structures with more scalable properties. This document summarizes
this work as well as plans for carrying it forth.
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LSM-Tree. Modern storage engines streamline new application data into storage
(disk or SSD) as small sorted files, which are later merged into larger sorted files.
This organization is known as a log-structured merge-tree (LSM-tree) and it is illus-
trated in Figure 1. With LSM-tree, merging files more eagerly creates higher over-
heads for writes but allows for faster queries as there are fewer files to search. This
trade-off is controlled by a compaction policy, which dictates which files to merge
under which conditions.
Filters. Each file of an LSM-tree is assigned a “filter” in fast memory (DRAM chips)
as shown in Figure 1. A filter is a compressed approximate representation of a file
that takes up little space. Filters can be quickly searched to rule out files that do
not contain the target data. Thus, they eliminate unnecessary accesses to slower
storage. The more space a filter is assigned, the more accurate it becomes thus
allowing queries to rule out the file with a higher probability. An LSM-tree implements
a filtering policy to decide how much memory to assign each filter. Together, the filtering and compaction policies
govern a three-way trade-off between the overheads of queries, writes and space.
Overarching Question. As with most tree structures, LSM-tree’s query and write overheads grow logarithmically
with respect to the data size. The intuition is that as the data grows, the number of files that must be queried and
merged grows too. In our current era of exponential data growth, logarithmic scalability implies linearly increasing
overheads with respect to time. The outcome is rapidly deteriorating performance. While it is possible to offset
one of the overheads growing by another (e.g., by merging more eagerly or allocating larger filters to prevent query
overheads from increasing), it is impossible with existing designs to keep all three overheads steady at the same
time as the data grows. This begs a question: is it possible to achieve sub-logarithmic query and write costs for an
LSM-tree, all without hurting space?
Step 1: Scaling Queries. Our first work on this topic shows that existing storage engines assign memory to the
different filters in a manner that does not minimize the overall rate at which the filters make mistakes (false positives).
These false positives, in turn, result in unnecessary storage accesses that amplify query costs. The work frames a
constrained optimization problem where the objective is to minimize the sum of false positive rates across all filters
by allocating a finite memory budget across them. It shows that optimal solution is for the filtering policy to assign
relatively more memory to filters of smaller files [1, 2]. The intuition is that since smaller files contain a small fraction
of the overall data, their false positive rates can be drastically reduced by allocating only a slightly higher proportion
of the overall memory budget to them. The approach is shown to reduce query cost from O(logN) to O(1) storage
accesses by causing the sum of false positive rates to converge with respect to the number of files. This work received
a citation as one of the best four papers of SIGMOD 2017.
Step 2: Scaling Writes. Our next effort was to reduce and better scale write overheads to allow applications to
ingest new data more efficiently. A naı̈ve solution to this problem is tuning the compaction policy to merge files less
eagerly so that less work has to be done to organize new data. The problem with less eager merging, however,
is that it leads to having more files in the system for queries to have to search, or it requires having larger filters
to keep queries fast. The research challenge is therefore to improve write costs without hurting query speed or
space. To address this problem, we observed that smaller files in the LSM-tree are merged more frequently and
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are therefore responsible for most compaction overheads. At the same time, as discussed in Step 1, smaller files
have fewer entries, and so it is feasible to drastically reduce their filters’ false positive rates by allocating slightly more
of the overall memory budget to them. Hence, we co-designed the compaction and filter policies to merge smaller
files less eagerly while assigning their filters relatively more memory [3, 4]. The solution is shown to reduce write
overheads from O(logN) to O(log logN) storage accesses while keeping query and space overheads unharmed. In
addition, this work explores the compaction design space for LSM-tree and proposes a parameterized generalization
that allows assuming different trade-offs between query, write and space costs for different application workloads.
Step 3: Scaling Memory Accesses. A traditional assumption in the design of storage engines is that memory
access (i.e., on DRAM) takes negligible time relative to storage access (i.e., on disk or SSD). Modern SSDs, however,
call this assumption into question as they are rapidly getting faster. For an LSM-tree with tens to hundreds of files,
the cumulative time taken to access all filters in memory can exceed the time taken to fetch the target data entry
from a high-end storage SSD. Hence, we identified a new research challenge: preventing filtering from becoming a
performance bottleneck as SSDs continue to evolve. Towards this end, the work proposes a unified filter over the
whole LSM-tree that takes less time to query. This filter is structured as a compact hash table, which maps from
an approximate representation for each key in the LSM-tree to the ID of the file whereon that key resides. To keep
the memory requirement fixed, we compress the file IDs within the hash table using Huffman coding. The new filter
brings memory access cost from O(logN) to O(1) for queries while keeping all other overheads unharmed [5]. I
pursued this work while working at Pliops, a startup working on a hardware-accelerated storage engine [6].
Step 4: Filtering Range Queries. Filters in modern storage engines support point queries, which take as input
one key and expect one data entry as output. They do not support range queries, which take as input a range, say
one to ten, and expect as output all data entries whose keys fall in-between. Hence, range queries are generally slow
as they have no means of ruling out files that do not contain relevant data. To address this problem, we introduced a
range filter, which indexes every prefix of every key in a file and processes queries by checking if any of the relevant
prefixes covering the target range are present [7]. This new range filter brings as much as a 40x improvement in
throughput relative to standard filters and a 2-5x improvement relative to the best competition from the literature.
Step 5: Creating New Use-Cases. Alongside the work on LSM-tree’s scalability, I worked on extending the
applicability of LSM-tree to new application domains. The crux of these projects has been to find ways of representing
particular application data in a manner that lends itself to efficient indexing. This included indexing the location of
invalid data within an SSD for the purpose of garbage-collection [8, 9, 10], creating a new representation for time
series that lends itself to fast similarity search using an index [11, 12, 13], and accelerating statistical queries by
indexing aggregations of the raw data [14].
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Future Directions. The cost contentions between writes, queries, and space in
database indexes are intrinsic, and we will likely never overcome them completely.
Nevertheless, there is a need to better understand how these overheads interact.
For example, if one is willing to merge each data entry α times and has β bits of
memory, what is the lowest one can hope for query overheads to be? Today, there
is no way of answering such questions, and yet they are necessary to determine
whether performance and space overheads are air-tight across all fronts when de-
signing a new system.

Towards this end, I am inspired by information theory, which provides a lower
bound over how much data can be compressed with respect to the data’s distribution
yet independently of any particular compression algorithm. In a similar fashion, I
envision a theory that provides lower bounds for the relevant indexing cost metrics
with respect to each other yet independently of any particular data structure. We
may conceive these lower bounds as a multi-dimensional Pareto curve as shown in Figure 2, yet where the precise
shape of the curve depends on the data size and distribution. The work described above in Steps 1 to 4, which proved
the existence of several untapped optimization opportunities, indicates that existing data structures still hover above
the curve in Figure 2. Hence, they provide sub-optimal trade-offs to applications running on top. A core goal with a
theory of indexing would be to provide guidance on where further optimization opportunities might lay. The ultimate
ambition is making every point along the curve in Figure 2 habitable by a known data structure with a particular tuning.

A complementary yet equally important challenge is that application workloads are often not known in advance
when a system is first deployed. Once an application is already running, switching its storage engine to a different
option, which may be more appropriate, is often disruptive and thus prohibitive. Towards this end, my colleagues and
I have envisioned amorphous data structures, which can assume different instances during runtime depending on
the application workload [16, 15, 17, 18]. Much work remains to implement amorphous systems in practice, and to
allow them to assume provably optimal trade-offs (i.e., along the curve in Figure 2).

With our society coming to increasingly rely on data and its efficient management, the design and performance of
storage engines are more important than ever. I am excited by the prospect of leading a research lab in this field at
such a foundational moment.
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