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ABSTRACT
Modern key-value stores typically rely on an LSM-tree in storage

(SSD) to handle writes and Bloom filters in memory (DRAM) to

optimize reads. With ongoing advances in SSD technology shrink-

ing the performance gap between storage and memory devices, the

Bloom filters are now emerging as a performance bottleneck.

We propose Chucky, a new design that replaces the multiple

Bloom filters by a single Cuckoo filter that maps each data entry to

an auxiliary address of its location within the LSM-tree. We show

that while such a design entails fewer memory accesses than with

Bloom filters, its false positive rate off the bat is higher. The reason

is that the auxiliary addresses occupy bits that would otherwise be

used as parts of the Cuckoo filter’s fingerprints. To address this, we

harness techniques from information theory to succinctly encode

the auxiliary addresses so that the fingerprints can stay large. As a

result, Chucky achieves the best of both worlds: a modest access

cost and a low false positive rate at the same time.
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1 INTRODUCTION
Modern KV-stores rely on an LSM-tree to persist data in storage. An

LSM-tree buffers new data in memory, flushes the buffer to storage

as a sorted run whenever it fills up, and compacts runs across a

logarithmic number of levels [79]. To optimize application point

queries, there is an in-memory Bloom filter [11] for each run to rule

out runs that do not contain a target entry. Such designs are used

in OLTP [45], HTAP [71], social graphs [74], FTL design [12, 27],

data series [61–63], blockchain [34], stream-processing [21], etc.

Problem 1: Changing Storage Media. LSM-tree was originally

designed for HDDs, which are 5-6 orders of magnitude slower than

DRAM memory chips. The advent of SSDs, however, has shrunk

the performance gap between storage and memory to 2-3 orders

of magnitude [10, 30, 37]. Today, a memory I/O takes ≈ 100 ns

while a read I/O on, say, an Intel Optane SSD takes ≈ 10 µs. Hence,
memory access is no longer negligible relative to storage access.

For LSM-trees, especially modern designs with tens to hundreds of

runs [59, 76, 85, 86, 98], querying a Bloom filter at ≈ 100 ns for each
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Figure 1: Existing filters for LSM-tree can not scale query
cost, construction cost and the false positive rate all at once.

run can approach and even exceed the latency of the SSD I/O(s)

that fetch the target entry from storage.

Problem 2: Workload Skew. KV-stores typically maintain an in-

memory block cache to store frequently accessed data blocks and

thereby optimize for skew, which is often common [41]. Querying

a block cache still requires to first traverse potentially all the Bloom

filters to identify the run that contains the target entry. As there

are no storage I/Os in this case, the cost of traversing the Bloom

filters becomes even more dominant.

Problem 3: Read vs. Write Contention. To mitigate the Bloom

filters’ query cost, one can tune the LSM-tree to merge more fre-

quently so that there are fewer runs and thus fewer Bloom filters

to access. This, however, increases the Bloom filters’ construction

costs. A Bloom filter is immutable and has to be rebuilt from scratch

during each compaction. Compacting more frequently, therefore,

entails rebuilding Bloom filters more frequently. It was recently

reported that Bloom filter construction can amount to over 70% of

performance overheads on the write path [58]. Thus, the access

and construction costs of Bloom filters contend with each other in

an LSM-tree context, as depicted conceptually in Figure 1 Part (A).

Problem 4: Scalability with Data Size. As the data size grows,
more Bloom filters need to be queried and constructed across more

LSM-tree levels. Hence, the overheads of querying and construct-

ing Bloom filters grow too. As shown in Figure 1 Part (A), this

causes the read vs. write trade-off curve to move outwards and

leave applications with worse trade-offs to choose between. With

data growing exponentially across many modern applications, the

outcome is rapidly deteriorating performance.

ResearchQuestion.Canwe devise a replacement for Bloom filters

that exhibits more robust and scalable performance for LSM-tree

with respect to (1) storage media, (2) workload skew, (3) LSM-tree

tuning, and (4) data size?

Cuckoo Filter: The Promise. Over the past decade, a new family

of data structures emerged as an alternative to Bloom filters. These

structures operate by storing a small hash digest called a fingerprint

for every entry’s key within a compact hash table. They include

Quotient filter [9, 81], Cuckoo filter [39] and others [15, 44, 80, 96].

In this paper, we replace an LSM-tree’s multiple Bloom filters

by a Cuckoo filter variant that maps each data entry to both a
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Term Definition
N largest level size (entries)
P buffer size (entries)
T LSM-tree size ratio
L number of LSM-tree levels
Z number of sub-levels at largest level
K number of sub-levels at each of Levels 1 to L-1
Ai   number of sub-levels at Level i
A   number of sub-levels in the whole LSM-tree
M filtering memory budget (bits/entry)

4 5 6

1 2 3

Figure 2: LSM-tree variants and terms used to describe them throughout the paper. Each rectangle represents a sub-level.

fingerprint and to an auxiliary Level ID (LID). A LID is a small

string of bits that identifies where a given entry resides within the

LSM-tree. It points to the level (or part of a level) that needs to be

searched during a point read for a matching fingerprint within the

Cuckoo filter. The promise is to reduce filtering memory I/Os to a

small and constant number, an improvement over Bloom filters.

Scaling the False Positive Rate. Despite the promise of this ap-

proach, we also identify a challenge: keeping the false positive rate

(FPR) low and stable. The FPR is inversely related to the fingerprint

size. Under a constrained memory budget, the LIDs occupy bits that

would otherwise be used as parts of the fingerprints. Worse, as the

data grows, the number of levels in the LSM-tree grows too. This

requires increasing the LID size (in bits) to still be able to identify

every level (or part thereof). As a result, the LIDs “steal” more bits

from the fingerprints as data grows. This causes the FPR to increase

over time. The outcome is more storage I/Os, which harm perfor-

mance. We illustrate the challenge conceptually in Figure 1 Part (B)

using the curve labeled Cuckoo Filter with Integer Level IDs.

Insight: Level ID Compressibility.Our core insight in this paper
is that, fortunately, LIDs are extremely compressible. The reason

is the LSM-tree’s exponential growth; most entries reside at larger

levels. Hence, the distribution of LIDs within the Cuckoo filter is

heavily skewed: most LIDs correspond to the largest level while

exponentially fewer correspond to smaller levels. We can therefore

encode the LIDs of larger levels with fewer bits than the LIDs of

smaller levels to minimize the average LID size. The saved bits can

be assigned to the fingerprints to keep them large.

Chucky. We present Chucky: Huffman Coded Key-Value Store, a
new design that scales memory I/Os, memory footprint, and the

false positive rate at the same time. It achieves this by replacing

the Bloom filters by a Cuckoo filter with succinctly encoded (i.e.,

compressed) LIDs. We explore in detail the design space for LID

compression, and we identify and tackle the resulting challenges: (1)

how to align fingerprints and compressed LIDs within the Cuckoo

filter’s buckets, and (2) how to en/decode LIDs efficiently. We use

the saved bits to keep the fingerprints large and thus to keep the

FPR low and stable as the data grows.

Contributions. Our contributions are as follows.
(1) We show that the Bloom filters of LSM-tree are emerging as

a memory I/O bottleneck as SSDs evolve and get faster.

(2) We replace the Bloom filters by a Cuckoo filter that maps

data entries to their locations within the LSM-tree.

(3) We show that level IDs are extremely compressible. We study

how to to efficiently en/decode them using Huffman coding.

(4) We show how to align compressed level IDs and fingerprints

within Cuckoo filter buckets to ensure good space utilization.

(5) We show experimentally that Chucky scales memory band-

width, memory footprint, and the FPR at the same time.

2 STATE-OF-THE-ART: LSM & BLOOM
LSM-tree consists of multiple levels of exponentially increasing

capacities. Level 0 is an in-memory buffer (a.k.a memtable), typically

implemented as a skip list or a hash table. All other levels are in

storage. The application inserts key-value entries into the buffer.

When the buffer fills up, it gets flushed to storage.

Merge Policy. An LSM-tree’s merge policy dictates which data to

merge in storage and when. While merge policies can be formalized

in different ways, we adopt the Dostoevsky framework [28] as it

generalizes several well-known policies. The number of levels L is

⌈logT (N/P)⌉, where N is the number of entries at the largest level,

P is the buffer size, and T is the capacity ratio between any two

adjacent levels (T≥2). Each level consists of one or more sub-levels,

where a sub-level is a placeholder for one chunk of sorted data. At

the largest level, there are Z sub-levels (1≤ Z<T ). At each of the

smaller levels, there are K sub-levels (1 ≤ K< T ). Figure 2 shows
how sub-levels are numbered for different configurations of the

parameters Z and K . The capacity at Level i is P ·T i entries, and
it is equally divided among the sub-levels at Level i . Equation 1

denotesAi as the number of sub-levels at Level i andA as the overall

number of sub-levels. The number of levels L and the number of

sub-levels A both grow with the data size.

Ai =

{
K for 1 ≤ i < L
Z else

A =
L∑
i=1

Ai = (L − 1) · K + Z (1)

There is zero or one run at each sub-level. A run comprises key-

value entries sorted by key. Different runs may have overlapping

key ranges. Each run may further be divided into smaller files

with non-overlapping key ranges called Sorted String Tables (SSTs),

though we will use run as the unit of data in the paper.

When all sub-levels at Level i have reached capacity, their con-

stituent runs get merged into the highest sub-level at Level i+1 that
is below capacity. If there is already a run at this target sub-level, it

is included in the merge. Hence, the jth youngest run at Level i is
always at sub-level number (i − 1) · K + j.

The parameters K and Z can be co-tuned to assume different

trade-offs. Figure 2 shows how to tune them to assume three merge

policies: (1) leveling, best for range reads, (2) tiering, best for writes,

and (3) lazy leveling, best for point reads. The size ratio T can be

tweaked to fine-tune these trade-offs, though Figure 2 fixes it to four.

When the size ratio T is set to two, its lowest possible setting, the

three merge policies behave identically. As we increaseT with each

policy, their behaviors diverge. With a vision towards navigable

systems that can learn and adapt across a wide design space to

optimize for different workloads [5, 6, 47, 52–57], we design Chucky

to span this entire wide compaction design space.

Updates & Deletes. Updates and deletes are performed out-of-

place by inserting a key-value entry with the updated value into

2



Leveling Lazy-Leveling Tiering

application query O(L) O(L ·T ) O(L ·T )

application update O(L ·T ) O(L +T ) O(L)

Table 1: Blocked Bloom filters’ memory I/O complexities.
the buffer (for a delete, the value is a tombstone). Whenever runs

that contain entries with the same key are merged, older versions

are discarded and only the newest version is kept. To always find

the most recent version of an entry, a query traverses the runs from

youngest to oldest (from smaller to larger levels, and from lower

to higher sub-levels within a level). It terminates when it finds the

first entry with a matching key. If this entry’s value is a tombstone,

the query returns a negative result.

Fence Pointers. For each run, there are fence pointers in memory

that comprise the min/max key at every data block. They allow

queries to binary search for the relevant data block that contains

a given key in ≈ log(N ) memory I/Os so that this block can be

retrieved cheaply with one storage I/O.

BloomFilters. For each run in the LSM-tree, there is an in-memory

Bloom filter (BF), a space-efficient probabilistic data structure used

to test whether a key is a member of a set [11]. A BF is an array of

bits with h hash functions. Each key is mapped using these hash

functions toh random bits, setting them from 0 to 1 or keeping them

set to 1. Checking for the existence of a key requires examining its

h bits. If any are set to 0, we have a negative. If all are set to 1, we

have either a true or a false positive. The false positive probability
(FPP) is 2

−M ·ln(2)
, whereM is the number of bits per entry. As we

increaseM , the probability of hash collisions decreases and so the

FPP drops. A BF does not support range reads or deletes. The lack

of delete support means that a new BF has to be built from scratch

for every new run as a result of compaction.

A BF entails h memory I/Os for an insertion or for a query to an

existing key. For a query to a non-existing key, it entails on average

two memory I/Os since ≈ 50% of the bits are set to zero and so the

expected number of bits checked before incurring a zero is two.

Blocked BloomFilters. To optimize memory I/Os, Blocked Bloom

filter has been proposed as an array of contiguous BFs, each the size

of a cache line [66, 84]. A key is inserted by first hashing it to one of

the constituent BFs and then inserting the key into it. This entails

only one memory I/O for any insertion or query. The trade-off is

a slight FPP increase. RocksDB has adopted blocked BFs. We use

standard and blocked BFs as baselines in this paper, and we focus

more on blocked BFs as they are the tougher competition.

Memory I/O Analysis. With blocked BFs, the overall cost of a

point query is (L − 1) · K + Z memory I/Os, one for each sub-

level of the LSM-tree. The cost of an insertion/update/delete, on

the other hand, is the same as the LSM-tree’s write-amplification:

≈ T−1
K+1 · (L − 1) + T−1

Z+1 with Dostoevsky. The reason is that every

compaction that an entry participates in leads to one BF insertion,

which costs one memory I/O. Table 1 summarizes these costs for

each of the merge policies. It shows that query cost over the BFs can

be significant, especially with tiering and lazy leveling. Moreover,

the BF’s query and construction costs both increase with respect

to the number of levels L and thus with the data size. Finally, there

is an inverse relationship between the BFs’ query and construction

costs: the greedier we set the LSM-tree’s merge policy to be (i.e., by

fine-tuning the the parametersT , K and Z ), query cost decreases as

there are fewer BFs while construction cost increases as the BFs get

rebuilt more frequently. Can we better scale these costs with respect

to the data size while also alleviating their read/write contention?

False Positive Rate Analysis. We define the false positive rate

(FPR) as the sum of FPPs across all filters. The FPR expresses the

average number of I/Os due to false positives that occur per point

query over the whole LSM-tree. Equation 2 expresses the FPR for

most KV-stores, which assign the same number of bits per entry

to all their BFs. This approach, however, was recently deemed sub-

optimal. The optimal approach is to reassign ≈ 1 bit per entry from

the largest level and to use it to assign linearly more bits per entry

to filters at smaller levels [25, 26]. While this increases the largest

level’s FPP, it exponentially decreases the FPPs at smaller levels

such that the overall FPR is lower, as expressed in Equation 3 [28].

F PRunif orm = 2
−M ·ln(2) · (K · (L − 1) + Z ) (2)

F PRoptimal = 2
−M ·ln(2) · Z

T−1
T · K

1

T ·
T

T
T−1

T − 1
(3)

Equation 3 states that with the optimal approach, the relationship

between memory and FPR is independent of the number of levels

and thus of data size, unlike Equation 2. The reason is that as the

LSM-tree grows, smaller levels are assigned exponentially lower

FPRs thus causing the sum of FPRs to converge. It is imperative

that any replacement we devise for the LSM-tree’s Bloom filters

either matches or improves on the FPR expressed in Equation 3.

3 PROMISE: LSM-TREE & CUCKOO FILTER
Cuckoo filter [39] (CF) is one of several data structures [9, 15, 44,

81, 96] that recently emerged as alternatives to Bloom filters. In

their core, these structures all employ a compact hash table that

stores fingerprints of keys, where a fingerprint is a string of F bits

derived by hashing a key. CF comprises an array of buckets, each

with S slots for fingerprints. During insertion, an entry with key k
is hashed to two bucket addresses b1 and b2 using Equation 4. A

fingerprint of key k is inserted into whichever bucket has space. If

both buckets are full, however, some fingerprint from one of the two

buckets is randomly chosen and swapped to its alternative bucket

to clear space. By virtue of using the xor operator, the right-hand

side of Equation 4 allows to always compute an entry’s alternative

bucket using the fingerprint and current bucket address without

the original key. The swapping process continues recursively either

until a free slot is found for all fingerprints or until a swapping

threshold is reached, at which point the insertion fails.

b1 = hash(k ) b2 = b1 ⊕ hash(k ′s f inдerpr int ) (4)

We employ a CF with S set to four slots per bucket through the

paper. Such a tuning can reach 95% space utilization with high

probability without incurring insertion failures and with only 1-2

amortized swaps per insertion. The false positive rate is ≈ 2 ·S ·2−F ,
where F is the fingerprint size in bits. Querying entails at most two

memory I/Os as each entry is in one of two buckets.

Promise. Cuckoo filter supports storing updatable auxiliary data

for each entry alongside its fingerprint. We propose to replace

the LSM-tree’s multiple Bloom filters with a CF that maps each

data entry not only to a fingerprint but also to a Level ID (LID),

mapping to the sub-level that contains the entry. The promise is to

allow finding the run that contains a given entry with at most two

memory I/Os, far more cheaply than with blocked Bloom filters.

3



Term Definition
B CF bucket size (bits)
F fingerprint size (bits)
D level ID size (bits)
S slots per CF bucket
pi fraction of data at Level i
fj probability of Level ID j
H entropy of level ID probability distribution

Hcomb entropy of combination probability distribution
C the set of all level ID combinations 

Cfreq the set of most probable level ID combinations
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Figure 3: Chucky uses a Cuckoo filter tomap entries in the LSM-tree, and it keeps thismapping up-to-date during compactions.

The FPR, meanwhile, is given in Equation 5 by subtracting the LID

size D from the memory budget M . The challenge is keeping D
small so that the FPR also stays small.

F PR ≈ 2 · S · 2−F = 2 · S · 2−M+D (5)

Case-Study. SlimDB [86] is the first system to replace an LSM-

tree’s Bloom filters by a Cuckoo filter with LIDs. It therefore pro-

vides an interesting case-study. SlimDB encodes LIDs as fixed-

length integers. Each LID therefore comprises at least log
2
(A) bits

to identify all runs uniquely, where A is the total number of sub-

levels from Equation 1. By plugging in log
2
(A) as D in Equation 5

and substituting for A, the FPR simplifies into Equation 6, which

indicates that the FPR increases with the number of levels L. The
reason is that the LIDs take away bits from the fingerprints as the

data grows to be able to identify more sub-levels uniquely. Is it

possible to keep the FPR lower and stable as the data size grows?

F PRbinary ≈ 2 · S · 2−M · (K · (L − 1) + Z ) (6)

Another issue with SlimDB is that it accesses storage before each

application write to check if the entry in question exists. If so, it

modifies the entry’s LID within the CF to reflect updated entry’s

location. This entails a substantial overhead on the write path. Can

we keep the LIDs up-to-date without read-before-write operations?

4 CHUCKY
Chucky is a novel LSM-tree filter that simultaneously scales mem-

ory bandwidth, memory footprint, and the false positive rate (FPR).

It achieves this by replacing the Bloom filters by a Cuckoo filter

(CF) variant that uses level IDs to map each entry to its sub-level

within the LSM-tree. It further innovates along two directions.

Opportunistic Maintenance. Chucky keeps the level IDs within

the CF up-to-date opportunistically during merge operations at no

additional storage I/O cost. We discuss this in Section 4.1.

Level ID Compression. Chucky compresses level IDs to prevent

their size from increasing and stealing bits from the fingerprints as

the data grows. Thus, Chucky keeps the FPR low. We show how

to compress level IDs in Section 4.2. We identify and address the

implications of compressed level IDs on bucket alignment and com-

putational efficiency in Sections 4.3 and 4.4, respectively. Section

4.5 covers miscellaneous design considerations .

4.1 Integration with LSM-Tree
Figure 3 illustrates Chucky’s architecture. For every data entry in

the LSM-tree, there is one CF entry consisting of a fingerprint and

a level ID (LID) that maps the entry’s current sub-level number.

Figure 3 also illustrates Chucky’s query and update workflows with

solid blue arrows and dashed red arrows, respectively.

Querying. Chucky processes a query by accessing both CF buckets
that the key maps to (using Equation 4). For all matching finger-

prints within these two buckets, it searches the corresponding runs

from youngest to oldest. In Figure 3, for example, the application

queries for key k7. Chucky maps this key to two buckets, both of

which have one entry with a matching fingerprint Y . One maps to

Sub-Level 4 and one to Sub-Level 5. The query searches Sub-Level 4

first as it contains younger data, but it incurs a false positive. It

then searches Sub-Level 5, where it successfully finds the target

entry. Since a query accesses two CF buckets, the overhead is two

memory I/Os, irrespective of the data size or merge policy.

Inserting New Data.Whenever the memtable gets flushed to stor-

age, Chucky adds a CF entry for each key in the batch (including for

tombstones). The overhead is approximately two memory I/Os per

entry as entries may be swapped across buckets to clear space. For

example, consider entry k1 in Figure 3, for which there is originally

one version at Sub-Level 2. A new version of this entry is then

flushed into Sub-Level 1. Chucky adds a new mapping entry for

the new version while still keeping the older version’s mapping in

the CF. This is in contrast to SlimDB, which would issue a storage

I/O to check if an entry with key k1 exists and if so update the

existing mapping entry’s LID in the CF. Hence, Chucky removes

SlimDB’s read-before-write operation. The outcome is better per-

formance. The trade-off is that Chucky has to map obsolete entries

in its CF until compaction, differently from SlimDB but similarly to

Bloom Filters, for which different versions of the same entry also

take up space across multiple filters until compaction. A problem

that can arise with Chucky is that CF buckets can overflow if too

many obsolete versions of the same entry exist, as their mapping

entries all get placed in the same pair of CF buckets. We handle

such overflows in Section 4.5 through extension buckets.

Maintenance. As an entry moves into a new sub-level during a

compaction, Chucky updates its LID in the CF as it is brought into

memory to be merged. For every obsolete entry identified during

compaction, on the other hand, Chucky finds and removes the

corresponding mapping entry from the CF. In Figure 3, for example,

compaction is triggered, merging the two runs at Sub-Levels 1 and 2

into one run at Sub-Level 3. During this operation, the older version

of key k1 from Sub-Level 2 is removed from the CF. For the newer

version of k1, the LID is updated from 1 to 3 to reflect the new

sub-level. This approach does not involve any additional storage

I/Os on top of the ones that are already issued for compaction. The

memory access cost is 1.5 I/Os on average to find the target entry

across the two possible CF buckets that may contain it.

Interestingly, an entry’s LID does not need to be updated when

the entry stays at the same sub-level after compaction. For example,

suppose Sub-Levels 3 and 4 in Figure 3 now get merged with Sub-

Level 5, and the resulting run stays at Sub-Level 5 as it does not

4



Leveling Lazy-Leveling Tiering

application query O(1) O(1) O(1)

application update O(L) O(L) O(L)

Table 2: Chucky’s memory I/O complexities.
exceed its capacity. In this case, the LIDs of entries k2, k4, k5, k6 and
k7 stay the same. By contrast, with Bloom filters we would have to

rebuild the filter at Sub-Level 5 and reinsert each of these entries at

a significant memory I/O cost. Hence, a LID is updated at most L
times, once for each time it moves into a new level. The overall

overhead is therefore at most ≈ 1.5 · L amortized memory I/Os per

application insert/update/delete, irrespective of the merge policy.

Memory I/O Complexities. Table 2 summarizes the memory I/O

complexities of Chucky. Relative to the BFs in Table 1, Chucky’s

core advantage is reducing query cost to a small constant that is

independent of the data size and of the merge policy. Chucky also

reduces the update cost complexities for leveling and lazy leveling,

thus eliminating the dependence of update cost on the merge policy.

In practice, for tiering and lazy leveling, Chucky’s update cost of

≈ 1.5 · L memory I/Os per entry may be slightly more expensive

than with blocked BFs. This, however, is counterbalanced by the

substantial point read cost reduction.

Interplay with CPU Caching. For workloads with point skew,
whereby the same data entries are repeatedly read by the appli-

cation, Chucky can accommodate a larger working set within the

CPU caches. The reason is that only two CF buckets need cached for

any frequently accessed entry. With blocked BFs, however, at most

A filters need to be cached for such an entry. On the other hand,

for workloads with areal skew, whereby entries in the same tempo-

ral or spatial area are more likely to be read, BFs may better lend

themselves to CPU caching as they are more granular temporally

(across sub-levels) and spatially (across SSTs within a sub-level). In

terms of update cost, BFs for smaller runs of the LSM-tree may in

practice fit in the CPU caches and thus entail fewer memory I/Os

than predicted in Table 1. The effects of CPU caching are subtle.

While workloads favoring BFs may be envisioned, Chucky gives

better worst-case guarantees and thus renders performance more

robust across all cases and especially as the data grows.

4.2 Compressing Level IDs
This section establishes theoretical bounds on the compressibility

of LIDs and explores their encoding design space in detail.

LID Probability Distribution. Equation 7 denotes pi as the frac-
tion of the LSM-tree’s overall capacity at Level i . The expression on

the left is more accurate but quickly converges to the expression

on the right as the number of levels grows. As expected, capacities

of smaller levels are exponentially decreasing.

pi =
T − 1
T L−i ·

T L−1

T L − 1
lim

L→∞
pi =

T − 1
T
·

1

T L−i ,
(7)

Equation 8 denotes fj as the fraction of the LSM-tree’s capacity

at Sub-Level j, which is a part of Level ⌈j/K⌉. Equation 8 is derived

by dividing the level’s capacity p ⌈j/K ⌉ (from Eq. 7) by the number of

sub-levels A ⌈j/K ⌉ at that level (from Eq. 1). For example, in Figure 3

Sub-Level 5 is at Level ⌈5/2⌉ = 3, and so it comprises a fraction of

f3/A3 ≈ 0.62 of the overall LSM-tree’s capacity.

fj =
p⌈j/K ⌉
A⌈j/K ⌉

(8)

Let us assume that all sub-levels of the LSM-tree are filled up

to capacity. Let us also assume that the average data entry size is

the same in different runs. Under these two assumptions, Equa-

tion 8 gives the probability that a randomly selected LID from the

Cuckoo filter corresponds to Sub-Level j . In other words, Equation 8
becomes a probability distribution of the LIDs within the CF.

The assumption that all sub-levels are full reflects the case where

memory pressure is highest. To optimize memory footprint for the

worst-case, we maintain this assumption for the rest of Section 4.

Entropy. Equation 9 derives the Shannon entropy of the LID prob-

ability distribution, which represents the average number of bits

needed to represent a LID after maximal compression. We derive it

by stating the definition of entropy on the left-hand side, plugging

in Equations 8 for fj , taking the number of sub-levels A and thus

the data size to infinity, and simplifying. Interestingly, the entropy

converges with respect to the number of sub-levels A and hence

with the data size. The intuition is that the exponential decrease

in LID probabilities for smaller levels trumps the fact that LIDs at

smaller levels would require more bits to represent uniquely.

H = lim

A→∞

A∑
j=1
−fj · log2

(
fj

)
= log

2

(
Z

T−1
T · K

1

T ·
T

T
T−1

T − 1

)
(9)

Chucky’s FPR Lower Bound. By plugging in the entropy H in

Equation 9 as the LID size D in Equation 5, we obtain an optimistic

FPR approximation for Chucky in Equation 10. This is the lowest

we may expect the FPR to be by virtue of compressing each LIDs as

much as possible and assigning all remaining bits to the fingerprints.

We observe that this bound is asymptotically lower with respect

to data size than the FPR for a CF with integer encoded LIDs in

Eq. 6. It is also asymptotically lower than the FPR upper bound for

uniformly allocated Bloom filters in Eq. 2. Finally, in comparison

to the FPR upper bound with optimally allocated Bloom filters

in Equation 3, we observe that while Equation 10 has a higher

multiplicative constant of 2 · S , the FPR decreases more quickly

with respect to memory (i.e., ∝ 2
−M

as opposed to ∝ 2
−M ·ln(2)).

This implies that for a high enoughmemory budget (M ≥ 10 bits per

entry), Chucky should be able to beat state-of-the-art Bloom filters

in terms of FPR. This theoretical finding reaffirms our approach.

F PRchucky ≳ 2 · S · 2−M · Z
T−1
T · K

1

T ·
T

T
T−1

T − 1
(10)

Huffman Coding. Chucky uses Huffman coding [46] to compress

LIDs in practice. As input, the Huffman encoder takes the LIDs

and their probability distribution (i.e., Eq. 8) for a particular LSM-

tree configuration (i.e., of T , K , Z and L). As output, it returns a
code to represent each LID, where LIDs with a higher probability

are assigned shorter codes. It does this by creating a binary tree

from the LIDs by connecting the least probable LIDs first as sub-

trees. A LID’s ultimate code length corresponds to its depth in the

resulting tree. Figure 4 illustrates an example for an LSM-tree with

labeled LIDs and their probabilities from Eq. 8. For example, LID

6 contains a fraction of 5/124 ≈ 4% of the LSM-tree’s capacity, and

therefore, when all sub-levels are full, ≈ 4% of all entries in the

Cuckoo filter have a LID of 6. The Huffman encoder creates the tree

shown alongside for this LSM-tree instance. The code for a given

LID is derived by concatenating the tree’s edge labels on the path

5
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from the tree’s root to the given LID’s leaf node. For instance, the

codes for LIDs 4 and 9 are 011011 and 1, respectively.

Decodability.With Huffman coding, no code is a prefix of another

code [46]. This property allows for unique decoding of an input bit

stream by traversing the Huffman tree starting at the root until we

reach a leaf, outputting the LID at the given leaf, and then restarting

at the root. For example, the input bit stream 11001 gets uniquely

decoded into LIDs 9, 9 and 7 based on the Huffman tree in Figure 4.

This property allows us to uniquely decode all LIDs within a bucket

without the need for delimiting symbols.

Average Code Length. We measure the encoded LIDs’ size using

their average code length (ACL), defined as

∑A
j=1 lj · fj , where lj

is the code length assigned to LID j. For example, this equation

computes 1.52 bits for the Huffman tree in Figure 4. This is a saving

of 62% relative to integer encoding, which would require four bits

to represent each of the nine LIDs uniquely.

Memory Footprint Analysis. It is well-known in information

theory that an upper bound on a Huffman code’s ACL is the entropy

plus one [46]. The intuition for adding one is that each code length

must be rounded up to an integer number of bits. We express this

as ACL ≤ H + 1, where H is the entropy from Eq. 9. We therefore

expect the ACL to also converge and become independent of the

data size, similarly to Eq. 9. We verify this in Figure 5 by increasing

the number of levels for the example in Figure 4 and plotting the

Huffman ACL, which indeed converges (in contrast to integer-

encoded LIDs). The reason is that while runs at smaller levels are

assigned longer codes, they are exponentially less probable, so the

smaller codes of runs at larger levels dominate the ACL.

Tight ACLUpper Bound.Huffman coding is known to be optimal

in that it minimizes the ACL [46]. However, the precise ACL is

difficult to analyze because the Huffman tree structure is difficult

to predict from the onset. Instead, we can derive an even tighter

upper bound on the ACL than H + 1 by assuming a less generic

coding method and observing that the Huffman ACL will be at

least as short. Let us represent each LID using (1) a unary encoded

prefix of length L − i + 1 bits to represent Level i followed by (2) a

truncated binary encoding suffix of length ≈ log
2
(Ai ) to represent

each of the Ai sub-levels at Level i uniquely. This is effectively a

Golomb encoding [43]. We derive this encoding’s average length in

Equation 11 as ACLU B and illustrate it in Figure 5 as a reasonably

tight upper bound of the Huffman ACL.

ACLU B = lim

L→∞

L∑
i=1

pi ·
(
L − i + 1 + log

2
(Ai )

)
=

T
T − 1

+ log
2
(K

1

T ·Z
T−1
T ) (11)

Proximity to Entropy. Figure 5 also plots the entropy of the LID

probability distribution from Eq. 9. As shown, there is a gap between

the Huffman ACL and the entropy. Figure 6 shows that as we

increase the LSM-tree’s size ratio T , the gap between the ACL

and the entropy grows; the ACL approaches one while the entropy

tends towards zero. The reason is that a larger size ratio increases

the skew of the LID probability distribution by pushing a higher

proportion of the data to larger levels. With more skew, each LID

carries less information, leading to a lower entropy and thus higher

compressibility. However, each LID requires at least one bit to

represent with a code, and so the ACL cannot drop below one.

Hence, we cannot harness the increase in compressibility.

Level ID Permutations. As there are multiple LIDs at each CF

bucket, we can push the compression barrier of one bit per LID

by encoding multiple LIDs collectively. The Huffman Tree labeled

Perms. Figure 7 gives a toy example of how to encode two LIDs

at a time as permutations, obtained by feeding every possible per-

mutation of size S (two in this case) along with its probability (the

product of the constituent LIDs’ probabilities) into a Huffman en-

coder. As shown, the ACL now drops below one bit by virtue of

representing the most probable permutation with fewer bits than

the number of LIDs within it. Interestingly, Figure 6 shows that

as we increase the number of collectively encoded LIDs within a

permutation, the ACL approaches the entropy.

Level ID Combinations. To push compression even further, we

can encode combinations as opposed to permutations of LIDs. A

combination, unlike a permutation, disregards information about

the ordering of entries. As there are fewer possible combinations

than permutations of LIDs within a CF bucket (

(S+A−1
S

)
as opposed

to AS ), we need fewer bits on average to represent them.

The probability distribution of LID combinations is multinomial.

For n independent trials, each leading to a success for one of k
categories, with each category having a fixed success probability,

the multinomial distribution gives the probability of any particular

combination of successes across the various categories. In our case,

the number of trials is the number of slots S per CF bucket, the

different categories are the A LIDs, and the success probabilities

are given by the LID probability distribution in Equation 8.

Now, let us denote c(j) as the number of occurrences of LID j
within a combination c . Equation 12 gives cprob as the probability

of combination c using the multinomial distribution. By feeding all

combinations and their probabilities into a Huffman encoder for

the example in Figure 7, we obtain the Huffman tree titled Combs,

where the combination 12 replaces the two prior permutations 12

and 21. For this combination, we have S = 2, c(1) = 1 and c(2) = 1,

and so its probability is 2! · (1/11) · (10/11) = 20/121.

cprob = S ! ·
A∏
j=1

f c (j )j

c(j)!
(12)
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Combinations Analysis. The fact that combinations exclude in-

formation about ordering causes a reduction in entropy. Equation 13

derives Hcomb as the entropy of the LID combinations distribution

by using the multinomial distribution’s entropy function and plug-

ging in S , A, and Eq. 9. Figure 8 shows that as we increase the

combination size, Hcomb drops relative to H as it eliminates more

ordering information. This leads to an increase in compressibility.

Hcomb = H −
1

S
·

(
log

2
(S !) −

A∑
i=1

S∑
j=0

(
S
j

)
· f ji · (1 − fi )

S−j · log
2
(j !)

)
(13)

The ACL with combinations is

∑
c ∈C (lc ·cprob )/S where C is the set

of all combinations and lc is the code length for Combination c (we
divide by S to express the ACL per LID rather than per bucket). We

observe that the combinations ACL is strictly lower than the permu-

tations ACL in Figure 8, and that it converges with the combinations

entropy as we increase the number of collectively encoded LIDs. In

the rest of the paper, we continue with encoded combinations as

they achieve the best compression.

Bucket Structure. Each CF bucket in Chucky commences with one

combination code followed by S fingerprints. Since the combination

code excludes information about ordering, the fingerprints within

the bucket are sorted based on their LIDs in order to be able to infer

which fingerprint corresponds to which LID.

4.3 Aligning Level ID Codes with Fingerprints
Since LIDs are variable-length due to compression, aligning them

along with fingerprints within CF buckets becomes a challenge. We

depict this challenge in Figure 10 Part (A) with sixteen-bit CF buck-

ets that need to store one combination code for two entries along

with two five-bit fingerprints (FPs). This example is based on the

LSM-tree instance in Figure 4 except we now encode combinations

rather than every LID individually. The term lx,y in the figure is the

code length assigned to a bucket with LIDs x andy. We observe that

some codes and fingerprints perfectly align within a bucket (Row I).

However, others exhibit underflows (Row II), meaning some bits at

the end of the bucket are unused. Still other buckets exhibit over-

flows (Rows III and IV), meaning the cumulative length of the code

and the fingerprints exceeds the bucket’s size. Underflows occur at

buckets with more probable LIDs (belonging to larger levels) as a

result of having shorter combination codes. They are undesirable

as they waste bits that could have otherwise been used for having

larger fingerprints. On the other hand, overflows occur in buckets

with less probable LIDs (belonging to smaller levels) as a result

of having longer combination codes. They are undesirable as they

require storing the rest of the bucket contents elsewhere. This can

result in poorer memory utilization and higher access costs.

Figure 10 Part (A) implies that there is a contention between the

propensity of buckets to overflow and the fingerprint size. While

decreasing the fingerprint size alleviates overflows in some buckets,

it results in a higher false positive rate for the filter as a whole. We

substantiate this contention in Figure 9 with the curve labeled uni-
form fingerprints. The x-axis measures the fraction of overflowing

CF buckets while the y-axis measures the fingerprint size. Is it pos-

sible to eliminate this contention so as to guarantee few overflows

and large fingerprints at the same time?

Malleable Fingerprinting (MF). To enable better alignment of

codes and fingerprints, we introduce MF. The goal is to counterbal-

ance the fact that entries from larger levels tend to have smaller

combination code lengths and to use the spare space in the bucket

for having longer fingerprints. Thus, MF assigns entries at smaller

levels of the LSM-tree shorter fingerprints. As they get merged into

larger levels, however, they get assigned longer fingerprints.

The question with MF is how to choose a fingerprint length for

each level so as to carefully control the balance between fingerprint

lengths and bucket overflows. We frame this as an constrained op-

timization problem, where the objective is to maximize the average

fingerprint length,

∑L
i=1 FPi · pi , and where FPi be an integer de-

noting the length of fingerprints of entries at Level i . The problem
is defined for 2

B >
(S+A−1

S
)
, meaning the bucket size B has to be

at least large enough to identify all combinations uniquely. We

constrain the problem using a parameter NOV for the fraction of

non-overflowing buckets we wish to guarantee (ideally at least

0.9999). We use this parameter to define Cf r eq as a subset of C
that contains only the most probable LID combinations in C such

that their cumulative probabilities fall just above NOV 1
. We define

Equation 14 as a constraint requiring that for all c ∈ Cf r eq , the code
length (denoted lc ) plus the cumulative fingerprint length (denoted

cF P ) do not exceed the number of bits B in the bucket
2
.

∀c ∈ Cf r eq : cF P + lc ≤ B (14)

While optimization problems involving integers are known to be

difficult to solve, we exploit the particular structure of our problem

with an effective hill-climbing approach shown in Algorithm 1. The

algorithm initializes all fingerprint lengths to zero. It then increases

larger levels’ fingerprint sizes as much as possible, moving to a next

smaller level if the overflow constraint in Equation 14 is violated.

1
Formally,Cf r eq is defined such thatminc∈Cf req cprob ≥ maxc<Cf req cprob and

NOV ≤
∑
c∈Cf req

cprob ≤ NOV +minc∈Cf req cprob .
2
More concretely, for a combination c let c(j) denote the number of occurrences of

the j th LID. Then c ’s cumulative fingerprint length is cFP =
∑A
j=1 F P⌈j/K ⌉ · c(j). The

term F P⌈j/K ⌉ is the fingerprint size set to the j th LID, which is at Level ⌈j/K ⌉.
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Figure 10: Storing compressed level ID codes with uniformly sized fingerprints leads to poor bucket alignment (Part A). We
solve this problem using Malleable Fingerprinting (Part B) and Fluid Alignment Coding (Part C).

1 for i ← 1 to L by 1 do FPi ← FPmin end
2 FPmax =M − 1

3 for i ← L to 1 by −1 do
4 for b ← FPmin + 1 to FPmax by 1 do
5 temp← FPi
6 FPi ← b

7 if overflow constraint is violated then
8 FPi ← temp

9 FPmax = temp

Algorithm 1: Maximizing the average fingerprint size by
hill-climbing.

The rationale for lengthening larger levels’ fingerprints first is that

their entries are more common in the CF. Hence, the algorithm

follows the steepest ascent with respect to maximizing the objective

function. Figure 10 Part (B) gives an example of how MF allows for

entries from larger levels to have longer fingerprints (Row II) while

at the same time eliminating some overflows (Row III). The result

is a better balance between overflows and average fingerprint size

as shown in Figure 9.

Since MF assigns different fingerprint lengths to different ver-

sions of the same entry across different levels, a problem arises

whereby the Cuckoo filter can map these different versions of the

same entry to more than two CF buckets. The reason is that Equa-

tion 4 relies on an entry’s fingerprint to compute the alternative

bucket location, and so different fingerprint lengths would lead

to different bucket addresses. We resolve this by ensuring that all

fingerprints comprise at least FPmin bits, and we adapt the CF to

determine an entry’s alternative bucket based on its first FPmin
bits. This forces all versions of the same entry to reside in the same

pair of CF buckets. While this constraint slightly reduces the av-

erage fingerprint size given by Algorithm 1, it provides a lower

FPR variance as no entries are assigned very small fingerprints. In

accordance with the original CF paper [39], we set FPmin to five

bits to ensure that an entry’s two buckets are independent enough

to achieve a 95% space utilization.

Fluid Alignment Coding (FAC). Figure 10 Part (B) illustrates that
even with MF, underflows and overflows still occur (Rows II and

IV, respectively). To further mitigate them, we introduce FAC. FAC

exploits a well-known trade-off that the smaller some codes are

assigned within a Huffman code, the longer other codes must be for

all codes to remain uniquely decodable. This trade-off is embodied

in the Kraft-McMillan inequality [64, 75], which states that for a

given set of code lengths L, all codes can be uniquely decodable

if 1 ≥
∑
l ∈L 2

−l
. The intuition is that code lengths are set from a

budget amounting to 1, and that smaller codes consume a higher

proportion of this budget.

To exploit this trade-off, FAC assigns longer codes to occupy

the underflowing bits for the most probable bucket combinations.

As a result, the codes for less probable bucket combinations can

be made shorter. This creates more space in less probable buckets,

which is exploited to reduce overflows and to increase fingerprint

sizes for smaller levels. Figure 10 Part (C) illustrates this idea. The

combination in Row II, which is the most common in the system,

is now assigned a longer code by one bit to remove the underflow.

This allows reducing the code lengths for all other combinations,

which in turn allows setting longer fingerprints to entries at Levels 1

and 2 as well as to eliminate the bucket overflow in Row IV.

We implement FAC on top of MF as follows. First, we replace the

previous constraint in Equation 14 by a new constraint, given in

Equation 15. Expressed in terms of the Kraft-McMillan inequality,

it ensures that the fingerprint sizes stay short enough such that it

is still possible to construct non-overflowing buckets with uniquely

decodable codes for all combinations in Cf r eq . It also ensures that

all bucket combinations not in Cf r eq can be uniquely identified

using unique codes that are at most the size of a bucket B.

1 ≥
∑
c∈C


2
−(B−cFP ), for c ∈ Cf r eq
2
−B, else

(15)

Equation 15 does not rely on knowing Huffman codes in advance

(i.e., as Equation 14 does). Thus, we run the Huffman encoder after

rather than before finding the fingerprint lengths using Algorithm 1.

Furthermore, we run the Huffman encoder only on combinations

in Cf r eq while setting the probability input for a combination c

as 2
−(B−cFP )

as opposed to using its multinomial probability (in

Equation 12) as before. This causes the Huffman encoder to gen-

erate codes that exactly fill up the leftover bits B − cF P . For all
combinations not in Cf r eq , we set uniformly sized binary codes of

size B bits, which consist of a common prefix in the Huffman tree

and a unique suffix. Hence, we can decode both sets uniquely.

8



Z K T

L S B

Figure 11: The FPR decreases expo-
nentially as newer entries are ac-
cessed by queries.

L

Z K T

L S B

Figure 12: The Huffman tree size con-
verges while the de/recoding table
sizes grow slowly with data size.

Z K T

L S B

Figure 13: The decoding table access
cost increases slowly with data size
until flattening at one memory I/O.

The horizontal curve in Figure 9 shows that MF and FAC elimi-

nate the contention between overflows and fingerprint size when

applied together; fingerprints stay long and overflows stay rare

at the same time. The trade-off is that the average code length

becomes slightly longer than before. The reason is that by occupy-

ing the underflowing bits of the most probable combination codes,

FAC makes the ACL at least S bits long (≥ 1 bit per entry). This

means that achieving good bucket alignment requires sacrificing

some space. Figure 9 measures this sacrifice as the gap between the

curve for MF & FAC and the curve labeled theoretical maximum,

obtained by subtracting the entropy (from Eq. 13) from the memory

budgetM . It stands as ≈ 1/2 bit per entry for our example, a modest

price. We use MF and FAC by default for the rest of the paper.

Construction Time. The run-time complexity of Algorithm 1 is

O((L + M − Mmin ) · |C |), where L + M − Mmin is the number

of iterations and |C | is the cost of evaluating the constraint in

Equation 15. In addition, the time complexity of the Huffman en-

coder is O(|Cf r eq | · log2(|Cf r eq |)). To express these bounds more

loosely but in closed form, note that |Cf r eq | ≤ |C | =
(A+S−1

S
)
<

(A + S − 1)S · ( eS )
S < AS . This workflow is seldom invoked, only

when number of LSM-tree levels changes, and it can be performed

offline. Its run-time is therefore practical. Each of the points in

Figure 9 takes a fraction of a second to generate.

False Positive Rate (FPR). Chucky’s FPR is tricky to precisely

analyze because the fingerprints have variable sizes that are not

known in advance. Instead, we conservatively approximate the FPR

to still allow reasoning about system behavior. We use the ACL

upper bound ACLU B from Equation 11 to slightly overestimate the

average combination code length per entry with FAC. By plugging

in ACLU B for D in Equation 5, we obtain Equation 16, for which

the interpretation is the expected number of false positives for a

query to a non-existing key.

F PRchucky ≈ 2 · S · 2−M · 2
T
T−1 · K

1

T · Z
T−1
T (16)

Figure 11 compares Equation 16 to Chucky’s actual FPR. The

x-axis varies the level whereon the target entry resides, where 6 is

the ID of the largest level and ‘none’ means the target entry does

not exist. The y-axis measures the average number of false positives

incurred per query. The FPR drops exponentially when the target

entry is at smaller levels. The reason is that a point read accesses

the relevant levels from smallest to largest (to be able to find the

most recent version of the entry), and it terminates once it finds the

first matching entry. As a result, exponentially fewer false positives

take place as there are, on average, exponentially fewer entries

within the target two buckets that correspond to even smaller levels

than where the target entry resides. The figure demonstrates that

Equation 16 predicts within reason the case where the target entry

does not exist, and that it provides a reliable upper bound in all

cases where the entry does exist.

4.4 Optimizing Decoding & Recoding
We now discuss how to efficiently decode and recode combinations

codes during application reads and writes.

Cached Huffman Tree. A Huffman code is typically decoded one

bit at a time by traversing the Huffman tree from the root to a

leaf node. A possible problem is that traversing it can require as

much as one memory I/O per node visited. This cost grows with the

data size as the Huffman tree becomes deeper when there are more

levels. To restrict this cost, we observe that the bucket combination

distribution in Equation 12 is heavy-tailed. Hence, it is feasible to

keep a small Huffman Tree in the CPU caches to allow to quickly

decode only the most common combination codes. Hence, we only

construct a Huffman tree for the most common LID combinations

within the set Cf r eq , and we set the parameter NOV to 0.9999

so that the set Cf r eq comprises 99.99% of the most common com-

binations within the CF. Figure 12 shows that the corresponding

Huffman tree’s size converges with respect to the data size. The

reason is that the probability of a given bucket combination (in

Eq. 12) is convergent with respect to the number of levels, and so

any set whose size is defined in terms of its constituent members’

cumulative probabilities is also convergent in size with respect to

the number of levels. This property ensures that the Huffman tree

does not exceed the CPU cache size as the data grows.

Decoding Table (DT). In addition to the Huffman tree, there is a

Decoding Table in main memory to allow decoding combinations

codes not inCf r eq . To ensure fast decoding speed for DT, we exploit
the property from in the last subsection that all bucket combinations

not inCf r eq have uniformly sized codes. Hence, we structure DT as

an array whereby index i contains the LIDs that code i corresponds
to. This guarantees decoding speed in one memory I/O. Figure 12

measures the DT size as we increase the number of levels on the x-

axis (each DT entry is eight bytes). As DT contains ≈ |C | =
(A+S−1

S
)

entries, its size grows slowly with the data size and stays smaller

than 1MB even for a large LSM-tree instance with ten levels.

When point queries target data at smaller levels, the DT is more

likely to be accessed. Figure 13 varies the level whereon the target

entry resides and measures on the log-scale y-axis the average

number DT accesses per query. The reason for the increase in

access cost for entries at smaller levels is that a bucket that has at

least one LID corresponding to a smaller level is less likely to be in
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the setCf r eq and hence in the cached Huffman tree. However, this

overhead eventually flattens and therefore stays modest even in the

worst-case. Overall, compared to a plain Cuckoo, which accesses on

average 1.5 buckets before finding a matching fingerprint, Chucky

always accesses two buckets and potentially also the decoding table,

leading to three memory I/Os.

OverflowHash Table. To handle bucket overflows, we use a small

hash table to map from an overflowing bucket’s ID to the corre-

sponding fingerprints. Its size is ≈ (1−NOV ) = 10
−4

of the CF size.

It is accessed seldom, i.e., only for infrequent bucket combinations,

and it supports access in O(1) memory I/O.

Recoding Table (RT). To find the correct code for a given com-

bination of LIDs while handling application writes, we employ a

Recoding Table, implemented as a fast static hash table. It costs

at most O(1) memory I/O to access and its size scales the same as

the Decoding Table in Figure 12. Note that the most frequent RT

entries are in the CPU caches during run-time and thus cost no

memory I/Os to access.

Space Summary. Figure 12 illustrates the CF size as we increase
the number of LSM-tree levels. All auxiliary data structures are

comparatively small and therefore not space bottlenecks.

4.5 Additional Design Considerations
This section discusses additional design considerations.

Sizing & Resizing. When Chucky reaches capacity, it needs to

be resized to accommodate new data. Since a CF needs to access

the base data in order to be resized, we exploit the fact that merge

operations into the largest level of the LSM-tree pass over the

entire dataset. We use this opportunity to also build a new and

larger instance of Chucky.

Partitioning. Since Cuckoo filter relies on the xor operator to

locate an entry’s alternative bucket, the number of buckets must be

a power of two. This can waste up to 50% of the allotted memory,

especially whenever LSM-tree’s capacity just crosses a power of

two. To keep memory better-utilized, Vacuum filter [96] proposes

partitioning a CF into multiple independent CFs, each of which is

a power of two, but where the overall number of CFs is flexible.

Each key is mapped to one of the constituent CFs using a hash

modulo operation (similarly to blocked Bloom filters). In this way,

capacity becomes adjustable by varying the number of CFs. While

Chucky does not support this yet, it is an important future step for

memory-sensitive applications.

Empty CF Slots. We represent empty fingerprint slots using a

reserved all-zero fingerprint coupled with the most frequent LID

to minimize the corresponding combination code length.

Entry Overflows. Since a CF maps multiple versions of the same

entry from different LSM-tree runs into the same pair of CF buckets,

a bucket overflow can take place if there are more than 2 ·S versions

of a given entry. Some filters address this problem using embedded

fingerprint counters (e.g., Counting Quotient Filter [81]). Chucky,

however, uses an additional hash table (AHT), which maps from

bucket IDs to the overflowing entries. With insertion-heavy work-

loads, AHT stays empty. Even with update-heavy workloads, AHT

stays small since LSM-tree by design limits space-amplification

and thus the average number of versions per entry (e.g., at most

T
T−1 ≤ 2 with Leveling or Lazy Leveling). We check AHT for every

full CF bucket encountered during a query or update thus adding

to them at most O(1) additional memory access.

Persistence. For each run, Chucky persists the fingerprints of all

entries in storage. During recovery, it reads only the fingerprints

from storage and thus avoids a full scan over the data. It inserts each

fingerprint along with its LID into a brand new CF at a practically

constant amortizedmemory I/O cost per entry. In this way, recovery

is efficient in terms of both storage and memory I/Os.

RangeReads. Similarly to mainstreamKV-stores [3, 4, 38], Chucky

processes a range read by accessing the relevant key range at each

run without using the cuckoo filter. Range reads are therefore not

directly affected by this work. Note, however, that applications

with many range reads often opt for a leveled LSM-tree, whereon

Bloom filters constitute high construction overheads. Chucky can

indirectly improve performance for such applications by improving

write throughput and thus system performance as a whole.

Batch Updates. Chucky can support batch updates by (1) atomi-

cally inserting a batch into the WAL and the memtable, (2) inserting

all entries in the batch into the CF, (3) asynchronously flushing

the memtable to storage when it is full, and finally (4) atomically

removing the memtable from the read path.

5 EVALUATION
We now show experimentally that Chucky renders memory and

storage bandwidth more robust than with existing designs.

Baselines. We use our own LSM-tree implementation, designed

based on Dostoevsky [28]. We added as baselines blocked [84]

and non-blocked BFs with uniform false positive rates (FPRs) to

represent design decisions in RocksDB [38] and Cassandra [3],

respectively. We also support optimal FPRs [25]. We implemented

Chucky as described in Section 4. We support a version of Chucky

with uncompressed level IDs to loosely represent SlimDB [86].

Setup. The default setup consists of a Lazy-Leveled LSM-tree with

a 1MB buffer, a size ratio of five, and with six levels amounting

to ≈ 16GB of data. Each entry is 64B. There is a 1GB block cache,

and the database block size is 4KB. Chucky uses ten bits per entry

and 5% over-provisioned space. Hence, all BF baselines are assigned

a factor of 1/0.95 more memory to equalize memory across the

baselines. Every point in the figures is an average of three experi-

mental trials. We use a uniform workload distribution to represent

worst-case performance and a Zipfian distribution to create skew

and illuminate performance properties when the most frequently

accessed data is in the block cache. To account for filter resizing

overheads, any experiment that measures write cost commences

with an LSM-tree state whereby all levels but the largest are empty.

We then fill them up with writes until a major compaction into

the largest level occurs, leading to filter resizing. In Figure 14 Parts

(A) to (D), we evaluate filter performance in isolation from other

parts of the system (e.g., memtable, storage I/Os, block cache, block

index). We focus on end-to-end performance in Parts (E) to (H).

Platform. Our machine has 32GB DDR memory, Xeon E3-1505M

v5 with four 2.8 GHz cores and 8MB L3 caches. It runs Ubuntu 18.04

LTS and is connected to a 750GB Intel Optane SSD DC P4800X.

Memory I/O Scalability. Figure 14 Part (A) compares read/write

latency with Chucky against blocked and non-blocked BFs (both

with optimal FPRs) with a uniform workload as the data grows.
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Figure 14: Chucky scales memory I/Os with data size (A) and for any LSM-tree variant (B). At the same time, Chucky’s false
positive rate scales with data sizes (C) with memory footprint (D), and for any LSM-tree variant (E). Hence, it improves read
latency when target data is in fast storage (F) or cached (G), resulting in more scalable throughput (H).

Write latency is measured by dividing the overall time spent on

filter maintenance by the number of writes issued by the application.

Read latency is measured just before a full merge operation (when

there are the most runs in the system) to highlight worst-case

performance. Non-blocked BFs exhibit the fastest growing latency

as they require multiple memory I/Os per filter across a growing

number of filters. With blocked BFs, read/write latency grows more

slowly as they require at most one memory I/O per read or write.

Chucky’s write latency also grows slowly with data as there are

more levels across which to update LIDs. Crucially, Chucky is the

only baseline that keeps read latency low with data size as each

read requires a constant number of memory I/Os.

FPR Scalability. Figure 14 Part (B) compares the FPR for Chucky

with both compressed and uncompressed LIDs to blocked BFs with

both uniform and optimal space allocation. As we increase the

data size, the FPR of Chucky with uncompressed LIDs increases

since the LIDs grow and steal bits from the fingerprints. With

uniform BFs, the FPR also grows with data size as there are more

filters across which false positives can take place. In contrast, with

optimal BFs, smaller levels are assigned exponentially lower FPRs,

and so the sum of FPRs converges to a constant that’s independent

of the number of levels. Similarly, Chucky’s FPR stays constant as

the data grows since the average LID code length converges, thus

allowing most fingerprints to stay large. The figure also includes

the FPR model of Chucky from Equation 16 to show that, here too,

it gives a reasonable approximation of the FPR in practice.

Figure 14 Part (C) shows that Chucky requires at least eight bits

per entry to work (i.e., for codes and minimum fingerprint sizes).

However, with eleven bits per entry and above Chucky offers better

memory/FPR trade-offs than all BF variants. The reason is that

BFs are known to exhibit suboptimal space use, which effectively

reduces the memory budget by a factor of ln(2). Thus, Chucky

scales the FPR better with respect to memory. Part (D) show that

these results hold for any LSM-tree variant. Overall, Parts (B) to (D)

show that Chucky is at least on par with optimal BFs with respect

to scaling the FPR vs. memory budget trade-off.

Data in Storage vs. Memory. Figure 14 Parts (E) and (F) measure

end-to-end read latency with uniform and Zipfian (with parameter

s = 1) workloads, respectively. Read latency is broken in four

components, including storage I/Os, fence pointers, memtable, and

filter search. In Part (F), relevant data is most often in storage and so

storage I/Os dominates read cost. Since our SSD is fast, however, the

BFs probes still impose a significant latency overhead that Chucky

is able to eliminate. In Part (F), on the other hand, the workload is

skewed, meaning that target data is most often in the block cache.

In this case, the BFs become a bottleneck as they must be searched

before the relevant block in the cache can be identified. Chucky

alleviates this bottleneck thus significantly improving read latency.

End-to-End Write Cost. Figure 14 Part (G) highlight’s Chucky’s
ability to keep filter construction overheads low as we increase

merge greediness (e.g., to optimize for range reads). We start with

a leveled LSM-tree with size ratio two on the left-hand side and

increase it along the x-axis. The y-axis measures end-to-end write

cost, derived by dividing the overall time spent processing these

updates by the number of updates issued by the application. As we

increase the size ratio, write cost across all baselines increases since

there is more overlap between runs at adjacent levels, and so more

data needs to be rewritten on average during each merge operation.

With relatively lower merge greediness (i.e., to the left of the figure),

Chucky and blocked Bloom filters have similar construction over-

heads. However, as we increase the size ratio, end-to-end write costs

with blocked Bloom filters increase more rapidly. The reason is that

Bloom filters must be constructed from scratch during each merge

operation, and so their construction overheads are proportional
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to the LSM-tree’s merge overheads. On the other hand, Chucky’s

performance draws nearer to the curve with disabled filters. The

reason is that it only updates an entry’s LID as an entry moves from

one level to the next, and with larger size ratios there are fewer

levels in the LSM-tree. Hence, under greedy merge policies, which

are commonly used to optimize for range reads (e.g., the default

setting in RocksDB), Chucky tangibly improves end-to-end writes.

Throughput Scalability. Figure 14 Part (H) shows how through-

put scales as we increase the data size for a workload consisting of

95% Zipfian reads and 5% Zipfian writes (modeled after Workload B

in YCSB [23]). Since writes are skewed, newer updates rapidly

replace older entries during compaction at smaller levels and so

major compaction and filter resizing do not take place. The BF base-

lines do not scale well as they issue memory I/Os across a growing

number of BFs. Chucky with uncompressed LIDs also exhibits dete-

riorating performance as its FPR grows and leads to more storage

I/Os. Chucky with compressed LIDs also exhibits deteriorating per-

formance, mostly because the of the growing cost of the binary

search across the fence pointers. However, Chucky provides better

throughput with data size than all baselines because it scales the

filter’s FPR and memory I/Os at the same time.

6 RELATEDWORK
LSM-Tree Performance. With LSM-tree being adapted as a stor-

age engine across many systems (e.g., Cassandra [3], HBase [4],

AsterixDB [2], RocksDB [35, 38, 74]), there is significant interest

in optimizing LSM-tree performance [48, 70]. Most designs to date

focus on managing compaction overheads, for example by sepa-

rating values from keys [18, 68], partitioning runs into files and

merging based on maximal file intersections [7, 92, 94], keeping hot

entries in the buffer [7], making the buffer more dense [14] or con-

current [42], scheduling carefully to prevent tail latency [8, 69, 91],

using customized or dedicated hardware [1, 45, 95, 97, 101], and by

controlling delete persistence [90].

Another strain of work uses lazier compaction policies [76, 85,

86, 98, 99], which result in more runs and thus more BFs across

which false positives and memory I/Os take place. Several works

show how to implement lazier merge policies while still keeping

the FPRmodest, but they still incur many memory I/Os across many

BFs [25, 28, 29, 49–51]. SlimDB [86] shows how to reduce memory

I/Os using a Cuckoo filter, but its memory footprint does not scale

well as discussed in Section 3. In contrast, we show how to scale the

FPR, memory I/Os and memory footprint at the same time (for any

merge policy including lazy ones) by replacing the Bloom filters by

a Cuckoo filter with compressed level IDs.

Fingerprint Filters. While we build Chucky on top of Cuckoo

filter [39] for its design simplicity, there exist many other finger-

print filter designs with nuanced properties. Many strive for better

cache locality by using linear probing [9, 81], biasing Cuckoo in-

sertions to one bucket [15], or by ensuring both candidate buckets

are physically close [96]. Vacuum filter offers better memory uti-

lization by allowing the filter size to not be a power of two [96].

Some designs allow to delay resizing the filter by chaining overflow

filters [22, 96] or by sacrificing fingerprint bits [81]. Xor filter sup-

ports a better FPR in exchange for higher construction time [44, 80].

Other designs prevent overflows due to duplicate insertions using

internal counters [81]. Morton filter [15] maps entries to variable

sized “slots” within larger fixed-sized “blocks” and can therefore

accommodate variable-sized entries more gracefully. Integrating

Chucky with these filters to harness their properties can make for

intriguing future work.

Range Filters. Recent LSM-tree designs use a range filter for each

run [73, 100], which can save storage I/Os for range reads but

require more memory I/Os to access and construct. Applying design

elements from Chucky to create a unified range filter over a whole

LSM-tree to reduce memory I/Os is an intriguing future direction.

Learned Fence Pointers. Recent work attempts to reduce the

fence pointers’ memory I/O overheads through learned indexes [24]

by extrapolating an entry’s location within a run based on the data’s

key distribution. Such work can complement Chucky by addressing

the fence pointers, which become the next memory I/O bottleneck

once Chucky is applied.

Learning from Negative Queries. Recent filtering approaches

have been devised to learn from commonly issued negative queries

(to non-existing keys) to reduce the false positive rate [32, 65, 78].

Integrating such techniques with Chucky is an intriguing direction.

Bloom Filters (BF). Numerous BF variants have been proposed

[16, 72, 93], which enable counting [13, 40, 89], compressibility [77],

vectoriziation [83], deletes for some but not all entries [88], efficient

hashing [33, 60] and cache locality [17, 31, 66, 67, 84]. Bloomier

filter allows to associate values with keys but is unable to compress

values and is more complicated than fingerprint filters [19, 20].

Entropy Coding.Aside to Huffman coding, there exist other meth-

ods for compressing alphabets based on the probability distribution

of the constituent symbols: Arithmetic Coding [82, 87] and Asym-

metric Numeral Systems [36]. These methods do not require the

use of auxiliary structures for encoding or decoding symbols. Har-

nessing such techniques to eliminate Chucky’s auxiliary structures

(i.e., the Huffman Tree, the Decoding Table, and the Recoding table)

is an interesting future direction.

7 CONCLUSION
This paper that shows that as the performance gap between SSDs

and memory devices is shrinking, the Bloom filters of LSM-tree

are becoming a memory access bottleneck. We therefore propose

Chucky, a filter for LSM-tree that requires fewer memory I/Os to

query and maintain than Bloom filters. Chucky uses a Cuckoo filter

in memory to map all entries to their locations within the LSM-

tree, and it compresses this location information to keep the false

positive rate low and stable. Thus, Chucky achieves the best of all

worlds: fewer memory I/Os and a low and stable false positive rate,

all for the same memory budget.
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