
Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based
Key-Value Stores via Adaptive Removal of Superfluous Merging

Niv Dayan, Stratos Idreos
Harvard University

ABSTRACT
We show that all mainstream LSM-tree based key-value stores in the
literature and in industry suboptimally trade between the I/O cost of
updates on one hand and the I/O cost of lookups and storage space
on the other. The reason is that they perform equally expensive
merge operations across all levels of LSM-tree to bound the number
of runs that a lookup has to probe and to remove obsolete entries
to reclaim storage space. With state-of-the-art designs, however,
merge operations from all levels of LSM-tree but the largest (i.e.,
most merge operations) reduce point lookup cost, long range lookup
cost, and storage space by a negligible amount while significantly
adding to the amortized cost of updates.

To address this problem, we introduce Lazy Leveling, a new de-
sign that removes merge operations from all levels of LSM-tree but
the largest. Lazy Leveling improves the worst-case complexity of
update cost while maintaining the same bounds on point lookup
cost, long range lookup cost, and storage space. We further intro-
duce Fluid LSM-tree, a generalization of the entire LSM-tree design
space that can be parameterized to assume any existing design.
Relative to Lazy Leveling, Fluid LSM-tree can optimize more for
updates by merging less at the largest level, or it can optimize more
for short range lookups by merging more at all other levels.

We put everything together to design Dostoevsky, a key-value
store that adaptively removes superfluous merging by navigating
the Fluid LSM-tree design space based on the application workload
and hardware. We implemented Dostoevsky on top of RocksDB,
and we show that it strictly dominates state-of-the-art designs in
terms of performance and storage space.

ACM Reference Format:
Niv Dayan, Stratos Idreos. 2018. Dostoevsky: Better Space-Time Trade-Offs
for LSM-Tree Based Key-Value Stores via Adaptive Removal of Superfluous
Merging . In Proceedings of 2018 International Conference on Management of
Data (SIGMOD’18). ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3183713.3196927

1 INTRODUCTION
Key-Value Stores and LSM-Trees. A key-value store is a data-
base that efficiently maps from search keys to their correspond-
ing data values. Key-value stores are used everywhere today from
graph processing in social media [8, 17] to event log processing in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’18, June 10–15, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196927

WiredTiger

RocksDB, LevelDB, cLSM

bLSM

Cassandra, HBase

Dostoevsky

faster lookups

faster
updates Monkey

update cost

p
o
in

t
lo

o
k
u
p
 &

 s
p
a
c
e
 c

o
st

s

log

sorted
array

Monkey optimizes the Bloom filters allocation

Mainstream designs strike suboptimal trade-offs

Dostoevsky removes superfluous merging

Figure 1: Dostoevsky enables richer space-time trade-offs
among updates, point lookups, range lookups and space-
amplification, and it navigates the design space to find the
best trade-off for a particular application.
cyber security [18] to online transaction processing [27]. To per-
sist key-value entries in storage, most key-value stores today use
LSM-tree [41]. LSM-tree buffers inserted/updated entries in main
memory and flushes the buffer as a sorted run to secondary storage
every time that it fills up. LSM-tree later sort-merges these runs to
bound the number of runs that a lookup has to probe and to remove
obsolete entries, i.e., for which there exists a more recent entry
with the same key. LSM-tree organizes runs into levels of expo-
nentially increasing capacities whereby larger levels contain older
runs. As entries are updated out-of-place, a point lookup finds the
most recent version of an entry by probing the levels from smallest
to largest and terminating when it finds the target key. A range
lookup, on the other hand, has to access the relevant key range
from across all runs at all levels and to eliminate obsolete entries
from the result set. To speed up lookups on individual runs, modern
designs maintain two additional structures in main memory. First,
for every run there is a set of fence pointers that contain the first
key of every block of the run; this allows lookups to access a partic-
ular key within a run with just one I/O. Second, for every run there
exists a Bloom filter; this allows point lookups to skip runs that do
not contain the target key. This overall design is adopted in a large
number of modern key-value stores including LevelDB [32] and
BigTable [19] at Google, RocksDB [29] at Facebook, Cassandra [34],
HBase [7] and Accumulo [5] at Apache, Voldemort [38] at LinkedIn,
Dynamo [26] at Amazon, WiredTiger [52] at MongoDB, and bLSM
[48] and cLSM [31] at Yahoo. Relational databases today such as
MySQL (using MyRocks [28]) and SQLite4 support this design too
as a storage engine by mapping primary keys to rows as values.
The Problem. The frequency of merge operations in LSM-tree con-
trols an intrinsic trade-off between the I/O cost of updates on one
hand and the I/O cost of lookups and storage space-amplification

https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3183713.3196927
https://doi.org/10.1145/3183713.3196927

(i.e., caused by the presence of obsolete entries) on the other. The
problem is that existing designs trade suboptimally among these
metrics. Figure 1 conceptually depicts this by plotting point lookup
cost and space-amplification on the y-axis against update cost on
the x-axis (while these y-axis metrics have different units, their
trade-off curves with respect to the x-axis have the same shape).
The two points at the edges of the curves are a log and a sorted
array. LSM-tree degenerates into these edge points when it does
not merge at all or when it merges as much as possible, respectively.
We place mainstream systems along the top curve between these
edge points based on their default merge frequencies, and we draw
a superior trade-off curve for Monkey [22], which represents the
current state of the art. We show that there exists an even supe-
rior trade-off curve to Monkey. Existing designs forgo a significant
amount of performance and/or storage space for not being designed
along this bottom curve.
The Problem’s Source. By analyzing the design space of state-
of-the-art LSM-trees, we pinpoint the problem to the fact that the
worst-case update cost, point lookup cost, range lookup cost, and
space-amplification derive differently from across different levels.

• Updates. The I/O cost of an update is paid later through
the merge operations that the updated entry participates in.
While merge operations at larger levels entail exponentially
more work, they take place exponentially less frequently.
Therefore, updates derive their I/O cost equally from merge
operations across all levels.

• Point lookups. While mainstream designs along the top
curve in Figure 1 set the same false positive rate to Bloom
filters across all levels of LSM-tree, Monkey, the current
state of the art, sets exponentially lower false positive rates to
Bloom filters at smaller levels [22]. This is shown tominimize
the sum of false positive rates across all filters and to thereby
minimize I/O for point lookups. At the same time, this means
that access to smaller levels is exponentially less probable.
Therefore, most point lookup I/Os target the largest level.

• Long range lookups1. As levels in LSM-tree have exponen-
tially increasing capacities, the largest level contains most
of the data, and so it tends to contain most of the entries
within a given key-range. Therefore, most I/Os issued by
long range lookups target the largest level.

• Short range lookups. Range lookups with extremely small
key ranges only access approximately one block within each
run regardless of the run’s size. As the maximum number of
runs per level is fixed in state-of-the-art designs, short range
lookups derive their I/O cost equally from across all levels.

• Space-Amplification. The worst-case space-amplification
occurs when all entries at smaller levels are updates to entries
at the largest level. Therefore, the highest fraction of obsolete
entries in the worst-case is at the largest level.

Since the worst-case point lookup cost, long range lookup cost
and space-amplification derive mostly from the largest level, merge
operations at all levels of LSM-tree but the largest (i.e., most merge
operations) hardly improve on these metrics while significantly
adding to the amortized cost of updates. This leads to suboptimal
trade-offs. We solve this problem from the ground up in three steps.
1In Section 3, we distinguish formally between short and long range lookups.

Solution 1: Lazy Leveling to Remove Superfluous Merging.
We expand the LSM-tree design space with Lazy Leveling, a new de-
sign that removes merging from all but the largest level of LSM-tree.
Lazy Leveling improves the worst-case cost complexity of updates
while maintaining the same bounds on point lookup cost, long
range lookup cost, and space-amplification and while providing a
competitive bound on short range lookup cost. We show that the
improved update cost can be traded to reduce point lookup cost and
space-amplification. This generates the bottom curve in Figure 1,
which offers richer space-time trade-offs that have been impossible
to achieve with state-of-the-art designs until now.

Solution 2: Fluid LSM-Tree for Design Space Fluidity. We in-
troduce Fluid LSM-tree as a generalization of LSM-tree that enables
transitioning fluidly across the whole LSM-tree design space. Fluid
LSM-tree does this by controlling the frequency of merge opera-
tions separately for the largest level and for all other levels. Relative
to Lazy Leveling, Fluid LSM-tree can optimize more for updates by
merging less at the largest level, or it can optimize more for short
range lookups by merging more at all other levels.

Solution 3: Dostoevsky to Navigate the Design Space.We put
everything together in Dostoevsky: Space-Time Optimized Evol-
vable Scalable Key-Value Store. Dostoevsky analytically finds the
tuning of Fluid LSM-tree that maximizes throughput for a particular
application workload and hardware subject to a user constraint
on space-amplification. It does this by pruning the search space
to quickly find the best tuning and physically adapting to it dur-
ing runtime. Since Dostoevsky spans all existing designs and is
able to navigate to the best one for a given application, it strictly
dominates existing key-value stores in terms of performance and
space-amplification. We depict Dostoevsky in Figure 1 as a black
star that can navigate the entire design space.

Contributions. Our contributions are summarized below.

• We show that state-of-the-art LSM-trees perform equally
expensive merge operations across all levels of LSM-tree, yet
merge operations at all but the largest level (i.e., most merge
operations) improve point lookup cost, long range lookup
cost, and space-amplification by a negligible amount while
adding significantly to the amortized cost of updates.

• We introduce Lazy Leveling to remove merge operations at
all but the largest level. This improves the cost complexity
of updates while maintaining the same bounds on point
lookups, long range lookups, and space-amplification and
while providing a competitive bound on short range lookups.

• We introduce Fluid LSM-tree, a generalization of LSM-tree
that spans all existing designs. Relative to Lazy Leveling,
Fluid LSM-tree can optimize more for updates by merging
less at the largest level, or it can optimize more for short
range lookups by merging more at all other levels.

• We introduce Dostoevsky, a key-value store that dynamically
adapts across the Fluid LSM-tree design space to the design
that maximizes the worst-case throughput based on the ap-
plication workload and the hardware subject to a constraint
on space-amplification.

• We implemented Dostoevsky on RocksDB and show that it
dominates existing designs for any application scenario.

4

fence pointers

buffer

Bloom filters

m
ai

n
 m

em
or

y
se

co
n
d
ar

y
 s

to
ra

ge

level 1 2

7

3

1

2
5
6
8

1
3
4
7

tiering

4

0 1 2

1
3
7

leveling

1
2
3
4
5
6
7
8

0

2
5
6
8

… …

sorted runs

Figure 2: An overview of an LSM-tree using the tiering and
leveling merge policies.

2 BACKGROUND
This section gives the necessary background on LSM-tree based
key-value stores. Figure 2 illustrates their architecture and Table 1
gives a list of terms we use throughout the paper.
LSM-Tree Structure. LSM-tree optimizes for write-heavy work-
loads. This is an important performance goal for systems today
because the proportion of application writes is continuously in-
creasing (e.g., in 2012 Yahoo! reported that the proportion of writes
targeting their web-service was 50% and projected to continue ac-
celerating [48]). To optimize for writes, LSM-tree initially buffers
all updates, insertions, and deletes (henceforth referred to as up-
dates unless otherwise mentioned) in main memory, as shown in
Figure 2. When the buffer fills up, LSM-tree flushes the buffer to
secondary storage as a sorted run. LSM-tree sort-merges runs in
order to (1) bound the number of runs that a lookup has to access
in secondary storage, and to (2) remove obsolete entries to reclaim
space. It organizes runs into L conceptual levels of exponentially
increasing sizes. Level 0 is the buffer in main memory, and runs
belonging to all other levels are in secondary storage.

The balance between the I/O cost of merging and the I/O cost
of lookups and space-amplification can be tuned using two knobs.
The first knob is the size ratio T between the capacities of adjacent
levels; T controls the number of levels of LSM-tree and thus the
overall number of times that an entry gets merged across levels. The
second knob is themerge policy, which controls the number of times
an entry gets merged within a level. All designs today use either
one of two merge policies: tiering or leveling (e.g., Cassandra and
RocksDB use tiering and leveling by default, respectively [6, 29]).
With tiering, we merge runs within a level only when the level
reaches capacity [33]. With leveling, we merge runs within a level
whenever a new run comes in [41]. We compare these policies in
Figure 2 (with a size ratio of 4 and a buffer size of one entry2). In
both cases, the merge is triggered by the buffer flushing and causing
Level 1 to reach capacity. With tiering, all runs at Level 1 get merged

2In practice, the buffer size is typically set between 2 and 64 MB [29, 32], but we use a
size of one entry in this example for ease of illustration.

Term Definition Unit
N total number of entries entries
L number of levels levels

Lmax maximum possible number of levels levels
B number of entries that fit into a storage block entries
P size of the buffer in storage blocks blocks
T size ratio between adjacent levels

Tl im size ratio at which L converges to 1
M main memory allocated to the Bloom filters bits
pi false positive rate for Bloom filters at Level i
s selectivity of a range lookup entries
R zero-result point lookup cost I/Os
V non-zero-result point lookup cost I/Os
Q range lookup cost I/Os
W update cost I/Os
K bound on number of runs at Levels 1 to L − 1 runs
Z bound on number of runs at Level L runs
µ storage sequential over random access speed
ϕ storage write over read speed

Table 1: Table of terms used throughput the paper.

into a new run that gets placed at Level 2. With leveling, the merge
also includes the preexisting run at Level 2. We formally study
this design space in the next section. We discuss further details of
merge mechanics in Appendix D and other log-structured designs
in Appendix E.
Number of Levels. The buffer at Level 0 has a capacity of B · P
entries, where B is the number of entries that fit into a storage
block, and P is the size of the buffer in terms of storage blocks. In
general, Level i has a capacity of B · P ·T i entries, and the capacity
at the largest level can be approximated as having N · T−1T entries.
To derive the number of levels, we divide the capacity at the largest
level by the capacity of the buffer and take log baseT of the quotient,
as shown in Equation 1.

L =
⌈
logT

(
N

B · P
·
T − 1
T

) ⌉
(1)

We restrict the size ratio to the domain of 2 ≤ T ≤ Tl im , where
Tl im is defined as N

B ·P . As the size ratio increases and approaches
Tl im , the number of levels decreases and approaches 1. Increasing
T beyond Tl im has no structural impact. Furthermore, restricting
T to be 2 or greater ensures that the resulting run from a merge
operation at level i is never large enough to move beyond level
i + 1. In other words, this ensures that runs do not skip levels. Thus,
the highest possible number of levels Lmax is ⌈log2

(
N
B ·P · 1

2

)
⌉ (i.e.,

when the size ratio is set to 2).
Finding Entries. Since entries are updated out-of-place, multiple
versions of an entry with the same key may exist across multiple
levels (and even across runs within a level with tiering). To ensure
that a lookup is always able to find the most recent version of an
entry, LSM-tree takes the following measures. (1) When an entry
is inserted into the buffer and the buffer already contains an entry
with the same key, the newer entry replaces the older one. (2) When
two runs that contain an entry with the same key are merged, only
the entry from the newer run is kept because it is more recent. (3) To
be able to infer the order at which different entries with the same
key across different runs were inserted, a run can only be merged
with the next older or the next younger run. Overall, these rules

ensure that if there are two runs that contain different versions of
the same entry, the younger run contains the newer version.
Point Lookups. A point lookup finds the most recent version of
an entry by traversing the levels from smallest to largest, and runs
within a level from youngest to oldest with tiering. It terminates
when it finds the first entry with a matching key.
Range Lookups. A range lookup has to find the most recent ver-
sions of all entries within the target key range. It does this by
sort-merging the relevant key range across all runs at all levels.
While sort-merging, it identifies entries with the same key across
different runs and discards older versions.
Deletes. Deletes are supported by adding a one-bit flag to every
entry. If a lookup finds that the most recent version of an entry has
this flag on, it does not return a value to the application. When a
deleted entry is merged with the oldest run, it is discarded as it has
replaced all entries with the same key that were inserted prior to it.
Fragmented Merging. To smooth out performance slumps due to
longmerge operations at larger levels, mainstream designs partition
runs into files (e.g., 2 to 64 MB [29, 32]) called Sorted String Tables
(SSTables), and theymerge one SSTable at a time with SSTables with
an overlapping key range at the next older run. This technique does
not affect the worst-case I/O overhead of merging but only how this
overhead gets scheduled across time. For readability throughout
the paper, we discuss merge operations as having the granularity
of runs, though they can also have the granularity of SSTables.
Space-Amplification. The factor by which the presence of obso-
lete entries amplify storage space is known as space-amplification.
Space-amplification has traditionally not been a major concern for
data structure design due to the affordability of disks. The advent of
SSDs, however, makes space-amplification an important cost con-
cern (e.g., Facebook has recently switched from B-trees to leveled
LSM-trees due to their superior space-amplification properties [27]).
We include space-amplification as a cost metric to give a complete
picture of the designs that we introduce and evaluate.
Fence Pointers. All major LSM-tree based key-value stores index
the first key of every block of every run in main memory. We call
these fence pointers (see Figure 2). Formally, the fence pointers
take up O(N /B) space in main memory, and they enable a lookup
to find the relevant key-range at every run with one I/O.
Bloom Filters. To speed up point lookups, which are common in
practice [16, 48], each run has a Bloom filter [14] in main memory,
as shown in Figure 2. A Bloom filter is a space-efficient probabilistic
data structure used to answer set membership queries. It cannot
return a false negative, though it returns a false positive with a
tunable false positive rate (FPR). The FPR depends on the ratio
between the number of bits allocated to the filter and the number
of entries in the set according to the following expression3 [50]:

FPR = e−(bits/entr ies)·ln(2)
2

(2)

A point lookup probes a Bloom filter before accessing the corre-
sponding run in storage. If the filter returns a true positive, the
lookup accesses the run with one I/O (i.e., using the fence point-
ers), finds the matching entry, and terminates. If the filter returns a

3Equation 2 assumes that the Bloom filter is using the optimal number of hash functions
bits

entr ies · ln(2) to minimize the false positive rate.

negative, the lookup skips the run thereby saving one I/O. Other-
wise, we have a false positive, meaning the lookup wastes one I/O
by accessing the run, not finding a matching entry, and having to
continue searching for the target key in the next run.

Bloom filter has a useful property that if it is partitioned into
smaller equally-sized Bloom filters with an equal division of entries
among them, the FPR of each one of the new partitioned Bloom
filters is asymptotically the same as the FPR of the original filter
(though slightly higher in practice) [50]. For ease of discussion, we
refer to Bloom filters as being non-partitioned, though they can also
be partitioned (e.g., per every block of every run) as some designs
in industry to enable greater flexibility for space management (e.g.,
Bloomfilters for blocks that are not frequently read by point lookups
can be offloaded to storage to save memory) [32].

Applicability Beyond Key-Value Stores. In accordance with de-
signs in industry, our discussion assumes that a key is stored adja-
cently to its value within a run [29, 32]. For readability, all figures in
this paper depict entries as keys, but they represent key-value pairs.
Our work also applies to applications where there are no values
(i.e., the LSM-tree is used to answer set-membership queries on
keys), where the values are pointers to data objects stored outside
of LSM-tree [39], or where LSM-tree is used as a building block for
solving a more complex algorithmic problem (e.g., graph analytics
[17], flash translation layer design [23], etc.). We restrict the scope
of analysis to the basic operations and size of LSM-tree so that it
can easily be applied to each of these other cases.

3 DESIGN SPACE AND PROBLEM ANALYSIS
We now analyze how the worse-case space-amplification and I/O
costs of updates and lookups derive from across different levels
with respect to the merge policy and size ratio. To analyze updates
and lookups, we use the disk access model [1] to count the number
of I/Os per operation, where an I/O is a block read or written from
secondary storage. The results are summarized in Figures 3 and 4.

Analyzing Updates. The I/O cost of updating an entry is paid
through the subsequent merge operations that the updated en-
try participates in. Our analysis assumes a worst-case workload
whereby all updates target entries at the largest level. This means
that an obsolete entry does not get removed until its corresponding
updated entry has reached the largest level. As a result, every entry
gets merged across all levels (i.e., rather than getting discarded at
some smaller level by a more recent entry and thereby reducing
overhead for later merge operations).

With tiering, an entry gets merged O(1) time per level across
O(L) levels. We divide this by the block size B since every I/O during
a merge operation copies B entries from the original runs to the
new run. Thus, the amortized I/O cost for one update is O(LB) I/O.

With leveling, the jth run that arrives at Level i triggers a merge
operation involving the existing run at Level i , which is the merged
product of the previous T − j runs that arrived since the last time
Level i was empty. Overall, an entry gets merged on average T

2 , or
O(T), times per level before that level reaches capacity, and across
O(L) levels for a total ofO(T · L) merge operations. As with tiering,
we divide this by the block size B to get the amortized I/O cost for
one update: O(L ·TB) I/O.

long range lookupshort range lookupsupdates point lookups

leveling

tiering

O(1)

O(𝑇)

O(1)

O(𝑇)

O(1)

O(𝑇)

𝐎(𝑳)

𝐎(𝑳 (𝑻)

+

+ +

+ =

=

…

…

𝐎(𝒆-𝑴/𝑵)

O(𝑻 (𝒆-𝑴/𝑵)

+

+ +

+ =

=

…

…

O 123/4

56
+

+ +

+ =

=

…

…

+ + =… 𝐎(𝒔𝑩)

+ + =… O 9
:2;(< 𝐎(𝒔(𝑻𝑩)

level L-2 L-1 L L-2 L-1 L L-2 L-1 L L-2 L-1 L

O 9
:6(<O 9

:;(<

O 9
:6(<O 9

:;(<O 9
:=(<

… ………

O :
<O :

<O :
<

O >
<O >

<O >
<

𝐎 𝑳(𝑻
𝑩

𝐎 𝑳
𝑩

O 123/4

5;
O 123/4

5=

O 123/4

52;
O 123/4

56
O 123/4

5;

(A) (B) (C) (D)

Figure 3: In the worst-case, updates and short range lookups derive their I/O cost equally from access to all levels, whereas
point lookups and long range lookups derive their I/O cost mostly from access to the largest level.

We now take a closer look at how update cost derives from across
different levels. With tiering, Level i fills up every B · P ·T i appli-
cation updates, and the resulting merge operation copies B · P ·T i

entries. With leveling, a merge operation takes place at Level i every
B · P ·T i−1 updates (i.e., every time that a new run comes in), and it
copies on average B ·P ·T i

2 entries. By dividing the number of copied
entries by the frequency of a merge operation at Level i for either
leveling or tiering, we observe that in the long run the amount of
work done by merge operations at every level is the same, as shown
with the cost breakdown in Figure 3 (A). The intuition is that while
merge operations at larger levels do exponentially more work, they
are also exponentially less frequent.
AnalyzingPoint Lookups.To analyze theworst-case point lookup
cost, we focus on zero-result point lookups (i.e., to non-existing
keys) because they maximize the long-run average of wasted I/Os
(i.e., to runs that do not contain a target key). Zero-result point
lookups are common in practice (e.g., in insert-if-not-exist opera-
tions) [16, 48], and we extend their analysis to point lookups that
target existing entries in the next section.

The I/O cost for a zero-result point lookup is highest when every
Bloom filter returns a false positive. In this case, a point lookup
issues one I/O to every run, amounting to O(L) wasted I/Os with
leveling andO(T · L) wasted I/Os with tiering. In practice, however,
the Bloom filters eliminate most I/Os to runs that do not contain
the target key; key-value stores in industry use 10 bits per entry
for every Bloom filters leading to a false positive rate (FPR) of
≈ 1% for each filter [29, 32, 34]. For this reason, we focus on the
expected worst-case point lookup cost, which estimates the number
of I/Os issued by point lookups as a long-run average with respect
to the Bloom filters’ FPRs. We estimate this cost as the sum of
FPRs across all the Bloom filters. The reason is that the I/O cost of
probing an individual run is an independent random variable with
an expected value equal to the corresponding Bloom filter’s FPR,
and the expected sum of multiple independent random variables is
equal to the sum of their individual expected values [44].

In key-value stores in industry, the number of bits per entry
for Bloom filters across all levels is the same [7, 29, 32, 34, 48].
Therefore, the Bloom filter(s) at the largest level are larger than the
filters at all smaller levels combined, as they represent exponentially
more entries. Thus, the FPR pL at the largest level is upper bounded
using Equation 2 to O(e−M/N), whereM is the memory budget for
all filters and N is the number of entries in the system. Since all
other FPRs are the same as pL , the expected point lookup cost is the

product of pL and the number of runs in the system: O(e−M/N · L)

I/Os with leveling and O(e−M/N · L ·T) I/Os with tiering.
The most recent paper on this issue named Monkey [22] shows

that setting the same number of bits per entry for filters across
all levels does not minimize the expected number of wasted I/Os.
Instead, Monkey reallocates ≈ 1 bit per entry from the filter(s) at the
largest level, and it uses these bits to set the number of bits per entry
across smaller levels as an increasing arithmetic progression: Level i
gets a + b · (L − i) bits per entry, where a and b are small constants.
This causes a small, asymptotically constant increase to the FPR
at the largest level and an exponential decrease to the FPRs across
smaller levels, as they contain exponentially less entries. Since the
FPRs are exponentially decreasing for smaller levels, the sum of
FPRs converges to a multiplicative constant that is independent
of the number of levels. As a result, Monkey shaves a factor of L
from the complexity of point lookups leading to O(e−M/N) I/Os
with leveling and O(e−M/N ·T) I/Os with tiering, as we illustrate
in Figure 3 (B). It is always beneficial to use Monkey, for zero and
non-zero result point lookups alike and with any kind of skew [22].

Overall, we observe that point lookup cost using Monkey derives
mostly from the largest level, as smaller levels have exponentially
lower FPRs and so access to them is exponentially less probable.
As we will see at the end of this section, this opens up avenues for
further optimization.
Analyzing Space-Amplification. We define space-amplification
as the factor amp by which the overall number of entries N is
greater than the number of unique entries unq: amp = N

unq − 1.
To analyze the worst-case space-amplification, we observe that
levels 1 to L− 1 of LSM-tree comprise a fraction of 1

T of its capacity
whereas level L comprises the remaining fraction of T−1

T of its
capacity. With leveling, the worst-case space-amplification occurs
when entries at Levels 1 to L − 1 are all updates to different entries
at Level L thereby rendering at most a fraction of 1

T entries at level
L obsolete4. Space-amplification is therefore O(1T), as shown in
Figure 4 (A). For example, in production environments using SSDs
at Facebook, RocksDB uses leveling and a size ratio of 10 to bound
space-amplification to ≈ 10% [27]. With tiering, the worst-case
occurs when entries at Levels 1 to L − 1 are all updates to different

4In fact, if the largest level is not filled to capacity, space-amplification may be higher
than 1

T , but it is straightforward to dynamically enforce the size ratio across levels
to T during runtime by adjusting the capacities at levels 1 to L − 1 to guarantee the
upper bound of O (1

T) as in RocksDB [27].

leveling tiering

L-2 L-1 L L-2 L-1 L……

(A) (B)

…

……

obsolete
entries

obsolete
entries

Figure 4: Space-amplification isO(1T) with leveling andO(T)
with tiering.

entries at Level L, and where every run at Level L contains the
same set of entries. In this case, Level L entirely consists of obsolete
entries, and so space-amplification is O(T) as level L is larger by a
factor ofT − 1 than all other levels combined. Overall, space-amplif-
ication with both leveling and tiering in the worst case derives
mostly from the presence of obsolete entries at the largest level.
Analyzing Range Lookups. We denote the selectivity of a range
lookup s as the number of unique entries across all runs that fall
within the target key range. A range lookup scans and sort-merges
the target key range across all runs, and it eliminates obsolete
entries from the result set. For analysis, we consider a range lookup
to be long if the number of blocks accessed is at least twice as large
as the maximum possible number of levels: s

B > 2 · Lmax . Under
uniformly randomly distributed updates, this condition implies
with a high probability that most entries within a target key range
are at the largest level. For all practical purposes, we generalize the
treatment of long and short range lookups in Section 4.2.

A short range lookup issues approximately one I/O to every
run amounting to O(T · L) I/Os with tiering and O(L) I/Os with
leveling, as shown in Figure 3 (C). For a long range lookup, the size
of the result set before eliminating obsolete entries is on average
the product of its selectivity and space-amplification. We divide this
product by the block size to get the I/O cost: O(T ·s

B) with tiering
and O(sB) with leveling, as shown in Figure 3 (D).

A key distinction is that a short range lookup derives its cost
approximately equally from across all levels, whereas a long range
lookup derives most of its cost from access to the largest level.
Mapping the Design Space to the Trade-Off Space. There is an
intrinsic trade-off between update cost on one hand and the costs
of lookups and space-amplification on the other. We illustrate this
trade-off in conceptual Figure 5, whereon the solid line plots the
different costs of lookups and space-amplification on the y-axis
against update cost on the x-axis for both leveling and tiering as
we vary the size ratio, all based on the properties in Figures 3 and 4.
When the size ratio is set to its limiting value ofTl im (meaning there
is only one level in storage), a tiered LSM-tree degenerates into
a log whereas a leveled LSM-tree degenerates into a sorted array.
When the size ratio is set to its lower limit of 2, the performance
characteristics for leveling and tiering converge as their behaviors
become identical: the number of levels is the same and a merge
operation is triggered at every level when the second run comes in.
In general, as the size ratio increases with leveling/tiering, lookup
cost and space-amplification decrease/increase and update cost
increases/decreases. Thus, the trade-off space is partitioned: leveling
has strictly better lookup costs and space-amplification and strictly
worse update cost than tiering.

lo
ok

u
p
 c

os
ts

 &

sp
ac

e-
am

p
li
fi
ca

ti
on

update cost

log

T = 2

T = Tlim

sorted
array

T = Tlim

Figure 5: How far down is it possible to push the curve of
possible space-time trade-offs?

The Holy Grail. The solid line in Figure 5 reflects the properties
of Monkey, the current state of the art. Figure 5 also shows a dotted
line labeled the elusive optimal. The question guiding our research
is whether other designs are possible with space-time trade-offs
that more closely approach or even reach the elusive optimal.
The Opportunity: Removing Superfluous Merging. We have
identified an asymmetry: point lookup cost, long range lookup cost,
and space-amplification derive mostly from the largest level, while
update cost derives equally from across all levels. This means that
merge operations at smaller levels significantly amplify update
cost while yielding a comparatively insignificant benefit for space-
amplification, point lookups, and long range lookups. There is
therefore an opportunity of a merge policy that merges less at
smaller levels.

4 LAZY LEVELING, FLUID LSM-TREE,
AND DOSTOEVSKY

We now present Lazy Leveling, Fluid LSM-Tree, and Dostoevsky to
fluidly and dynamically adapt across an expanded LSM-tree design
space with richer performance and space trade-offs.

4.1 Lazy Leveling
Lazy Leveling is a merge policy that eliminates merging at all but
the largest level of LSM-tree. The motivation is that merging at
these smaller levels significantly increases update cost while yield-
ing a comparatively insignificant improvement for point lookups,
long range lookups, and space-amplification. Relative to leveling,
we show that Lazy Leveling (1) improves the cost complexity of
updates, (2) maintains the same complexity for point lookups, long
range lookups, and space-amplification, and (3) provides competi-
tive performance for short range lookups. We summarize the struc-
ture and performance characteristics of Lazy Leveling in Figure 6,
and we discuss this figure in detail in the rest of the section.
Basic Structure. The top part of Figure 6 illustrates the structure of
Lazy Leveling and compares it to tiering and leveling. Lazy leveling
at its core is a hybrid of leveling and tiering: it applies leveling
at the largest level and tiering at all other levels. As a result, the
number of runs at the largest level is 1 and the number of runs at
all other levels is at most T − 1 (i.e., a merge operation takes place
when the T th run arrives).
Bloom Filters Allocation. Next, we show how to keep the cost
complexity of point lookups fixed despite having more runs to
probe at smaller levels.We do this by optimizing thememory budget
among the Bloomfilters across different levels.We start bymodeling
point lookup cost and the filters’ overall main memory footprint
with respect to the FPRs.

level L-2 L-1 L

T-1T-1T-1

tiering leveling

L-2 L-1 L

111

L-2 L-1 L

1T-1T-1

lazy leveling

+ + =… O $
%O $

%O $
% 𝐎 𝑳

𝑩

O(𝑇)O(𝑇)O(𝑇) 𝐎(𝑳 , 𝑻)+ + =

+ + =𝐎(𝑻,𝒔𝑩)O /
012,%O /

03,%O /
02,%

…

…

+ + =… O 0
%O 0

%O 0
% 𝐎 𝑳,𝑻

𝑩

O(1)O(1)O(1) 𝐎(𝑳)+ + =

+ + =O /
03,% 𝐎(𝒔𝑩)O /

02,%O /
05,%

…

…

+ + =… O 0
%O $

%O $
% 𝐎 𝑳6𝑻

𝑩

+ + =O /
03,% 𝐎(𝒔𝑩)O /

03,%O /
02,%…

O(1)O(𝑇)O(𝑇) 𝐎(1+(L-1),T)+ + =…

update cost

short range
lookup cost

long range
lookup cost

(A)

+ + =… O 718/:

03 O 718/:

012O 718/:

02 𝐎(𝒆<𝑴/𝑵 , 𝑻) O 718/:

05 𝐎(𝒆<𝑴/𝑵)+ + =… O 718/:

02 O 718/:

03 O 718/:

05 𝐎(𝒆<𝑴/𝑵)+ + =O 718/:

02 O 718/:

03…zero-result point
lookup cost

+ + =… O 718/:

03 O 1+7
18/:

012O 718/:

02 𝐎(𝟏 + 𝒆<𝑴/𝑵 , 𝑻) O 718/:

05 𝐎(𝟏)+ + =… O 718/:

02 O 1 O 718/:

05 𝐎(𝟏)+ + =O 718/:

02 O 1…point lookup cost
to existing entries

runs per level

(B)

(C)

(D)

(E)

(F)

space-amplification(F) + + =… O 𝑇O $
02O $

05 𝐎 𝑻 + + =… O 0O $
02O $

05 𝐎 𝟏
𝑻 + + =… O 0O $

02O $
05 𝐎 𝟏

𝑻

Figure 6: A cost breakdown of updates, lookups, and space-amplification with different merge policies. Lazy Leveling achieves
the same space-amplification, point lookup cost, and long range lookup cost as leveling while improving update cost and
providing a slightly worse yet competitive short range lookup cost .

The worst-case expected number of wasted I/Os per lookup is
issued by a zero-result point lookup and is equal to the sum of false
positive rates across every run’s Bloom filters. We model this cost
for Lazy Leveling in Equation 3. The additive term pL corresponds
to the FPR for the single run at Level L, and the other term sums
up the products of FPRs and number of runs at Levels 1 to L − 1.

R = pL + (T − 1) ·
L−1∑
i=1

pi where 0 < pi < 1 (3)

Next, we model the memory footprintMi for the Bloom filters
at Level i with respect to the number of entries Ni and the FPR pi
at that level. We do this by rearranging Equation 2 in terms of bits
and applying it to each level. Since the filters at any given level all
have the same FPR, we can directly apply this equation regardless
of the numbers of runs at a level. The result is Mi = −Ni ·

ln(pi)
ln(2)2 .

Next, we express Ni more generally as the product of the capacity
at the largest level N · T−1

T and a discounting factor to adjust for
the capacity at Level i: 1

T L−i
. We then sum up the memory footprint

across all levels to get the overall memory footprintM . The result
is Equation 4.

M = −
N

ln(2)2
·
T − 1
T

·

L∑
i=1

ln(pi)
T L−i (4)

We now optimize Equations 3 and 4 with respect to each other
to find the FPRs that minimize point lookup cost R with respect
to a given memory budget M . To do so, we use the method of
Lagrange multipliers. The full derivation is in Appendix A. The
result is Equation 5.

pi =

R · T−1

T , for i = L

R · 1
T L−i+1

, for 1 ≤ i < L
(5)

Zero-Result Point Lookups. Next, we analyze the cost of zero-
result point lookupsR with Lazy Leveling.We plug the optimal FPRs
from Equation 5 into Equation 4, simplify into closed-form, and

rearrange in terms of R. The complete derivation is in Appendix B.
The result is Equation 6.

R = e−
M
N ·ln(2)2

·
T

T
T−1

(T − 1)
T−1
T

(6)

This equation allows to quickly find the optimal FPRs with respect
to a given memory budget M by plugging in the corresponding
value of R from Equation 6 into Equation 5.

To analyze the complexity of zero-result point lookups, we ob-
serve that the multiplicative term at the right-hand side of Equa-
tion 6 is a small constant for any value of T . Therefore, the cost
complexity is O(e−M/N), the same as with leveling despite having
eliminated most merge operations.
Memory Requirement. As the number of entries N grows rela-
tive to the memory budget M , the FPRs increase and eventually
converge to one (starting from larger to smaller levels because the
FPR at larger levels is higher). We identify the ratio of bits per
entryM/N at which point the FPR at Level L converges to one by
plugging in one for pL in Equation 5, plugging the corresponding
value of R into Equation 6, and rearranging in terms of M

N .

threshold for
M
N
=

1
ln(2)2

·

(
ln(T)
T − 1

+
ln(T − 1)

T

)
(7)

Equation 7 has global maximum of M/N = 1.62 bits per entry
(which occurs when T is set to 3). For mainstream key-value stores
used for server applications, the default ratio is an order of magni-
tude larger, typically 10 [29, 32, 48] or 16 [52], and so the FPRs are
all lower than one. For systems with less than 1.62 bits per entry
(e.g., mobile devices or sensors), we adapt Lazy Leveling and its
analysis in Appendix C by merging more at larger levels.
Point Lookups for Existing Entries.Theworst-case point lookup
cost to an existing entry occurs when the target key is at Level L.
The expected I/O cost comprises one I/O to Level L plus the sum of
FPRs across all other levels (i.e., R − pL) and is given in Equation 8.
The cost complexity isO(1) I/Os because the term R − pL is always

p
o
in

t
lo

o
k
u
p
 c

o
st

 (
I/

O
)

update cost (I/O)

lazy
leveling

(A)

log

O
!"

#
/%
&	
()
&*

O +
) O +

) &,-./
(
)&*

O
1

O (
)/&*

sorted
array

T = 2

T = Tlim

T = Tlim

sh
o
rt

 r
a
n
g
e

lo
o
k
u
p
 c

o
st

 (
I/

O
)

update cost (I/O)

(B)

log

leveling

O
()
&*

O +
) O +

) &,-./
(
)&*

O
,-
. /

()
&*

O (
)/&*

sorted
array

T = 2

T = Tlim

T = Tlim

lazy
leveling

lo
n
g
 r

a
n
g
e

lo
o
k
u
p
 c

o
st

 (
I/

O
)

update cost (I/O)

(C)

leveling

O +
) O +

) &,-./
(
)&*

O
1)

O (
)/&*

sorted
array

T = 2

lazy
leveling

O
1

T = Tlim

log
T = Tlim

O
1&
(

*&
)
/

O
()
&*

O
1

sp
a
ce-a

m
p
lifica

tio
n

O
1

O
𝑒3

4
/(

O
𝑒3

4
/(

O
+5
!"

#
/%
&	
()
&*

O
)
&*(

Figure 7: Lazy Leveling offers better trade-offs between updates and point lookups (Part A), worse trade-offs between updates
and short range lookups (Part B), and the same trade-offs between updates and long range lookups (Part C).

less than 1 as long as the memory requirement in Equation 7 holds.

V = 1 + R − pL (8)

Range Lookups. A short range lookup issues at most O (T) I/Os
to each of the first L − 1 levels and one I/O to the largest level,
and so the cost complexity is O(1 + (L − 1) ·T) I/Os. Note that this
expression initially increases as T increases, but as T approaches
its limiting value of Tl im this term converges to 1 as the additive
term (L − 1) · T on the right-hand size becomes zero (i.e., at this
point Lazy Leveling degenerates into a sorted array).

A long range lookup is dominated by sequential access to Level L
because it contains exponentially more entries than all other levels.
The cost is O(sB) I/Os, where s is the size of the target key range
relative to the size of the existing key space. This is the same as
with leveling despite having eliminated most merge operations.
Updates. An updated entry with Lazy Leveling participates inO(1)
merge operations per level across Levels 1 to L−1 and inO(T)merge
operations at Level L. The overall number of merge operations per
entry is therefore O(L +T), and we divide it by the block size B to
get the cost for a single update: O(L+TB). This is an improvement
over the worst-case cost with leveling.
Space-Amplification. In the worst case, every entry at Levels 1 to
L − 1 is an update to an existing entry at Level L. Since the fraction
of entries at Levels 1 to L − 1 is 1

T of the overall number of entries,
space-amplification is at mostO(1T). This is the same bound as with
leveling despite having eliminated most merge operations.
Limits. Figure 7 compares the behaviors of the different merge
policies as we vary the size ratio T for each policy from 2 to its
limit of Tl im (i.e., at which point the number of levels drops to
one). Firstly, we observe that these policies converge in terms of
performance characteristics when the size ratioT is set to 2 because
at this point their behaviors become identical: the number of levels
is the same and a merge operation occurs at every level when the
second run arrives. Secondly, Part (A) of Figure 7 shows that the
improvement that Lazy Leveling achieves for update cost relative
to leveling can be traded for point lookup cost by increasing the
size ratio. This generates a new trade-off curve between update
cost and point lookup cost that dominates leveling, and converges
with it again as T approaches Tl im (i.e., at which point both merge
policies degenerate into a sorted array). Parts (B) shows that the

cost of small range lookups is competitive, and part (C) shows that
this cost difference becomes negligible as the target range grows.
Lesson: No Single Merge Policy Rules. Our analysis in figure
Figure 7 shows that no single design dominates the others univer-
sally. Lazy leveling is best for combined workloads consisting of
updates, point lookups and long range lookups, whereas tiering
and leveling are best for workloads comprising mostly updates
or mostly lookups, respectively. In the rest of the paper, we take
steps towards a unified system that adapts across these designs
depending on the application scenario.

4.2 Fluid LSM-Tree
To be able to strike all possible trade-offs for different workloads,
we next introduce Fluid LSM-tree, a generalization of LSM-tree that
enables switching and combining merge policies. It does this by
controlling the frequency of merge operations separately for the
largest level and for all other levels.
Basic Structure. Figure 8 illustrates the basic structure of Fluid
LSM-tree. There are at mostZ runs at the largest level and at mostK
runs at each of the smaller levels. To maintain these bounds, every
Level i has an active run into which we merge incoming runs from
Level i − 1. Each active run has a size threshold with respect to the
capacity of its level: TK percent for Levels 1 to L − 1 and T

Z percent
for Level L. When an active run reaches this threshold, we start a
new active run at that level. Ultimately when a level is at capacity,
all runs in it get merged and flushed down to the next level.
Parameterization. The bounds K and Z are used as tuning pa-
rameters that enable Fluid LSM-tree to assume the behaviors of
different merge policies.

• K = 1 and Z = 1 give leveling.
• K = T − 1 and Z = T − 1 give tiering.
• K = T − 1 and Z = 1 give Lazy Leveling.

Fluid LSM-tree can transition from Lazy Leveling to tiering by
merging less frequently at the largest level by increasing Z , or it
can transition to leveling by merging more frequently at all other
levels by decreasing K . Fluid LSM-tree spans all possible trade-offs
along and between the curves in Figure 7.
Bloom Filters Allocation. Next, we derive the optimal FPRs that
minimize point lookup cost with respect to the parameters K and

L-2 L-1 L

ZKK

+ + =… O $
%&' 𝐎 𝑻

𝑩 &
𝑳
𝑲-	

𝟏
𝒁

+ + =O 1&2
$3&% 𝐎(𝒔&𝒁𝑩)O 2

$7&%O 2
$8&%…

O(𝑍)O(𝐾)O(𝐾) 𝐎(Z+(L-1)&K)+ + =

𝐎(𝒁 & 𝒆<𝑴/𝑵)+ + =O @&AB
C
D

E&F7

…

…

level

O $
%&' O $

%&1

O 1&GB
C
DO @&AB

C
D

E&F8

𝐎(𝟏 + 𝒁 & 𝒆<𝑴/𝑵)+ + =O @&AB
C
D

E&F7
… O(1 + 𝑍 & 𝑒<CD)O @&AB

C
D

E&F8

update cost

short range
lookup cost

long range
lookup cost

(A)

zero-result point
lookup cost

point lookup cost
to existing entries

runs per level

(B)

(C)

(D)

(E)

(F)

space-
amplification

(G) + + =… O J
$8 O J

$ O 1<J 𝐎 𝒛 − 𝟏 + 𝟏
𝑻

Figure 8: A cost breakdown of updates, lookups, and space-
amplification with Fluid LSM-tree.

Z . The derivation is in Appendix A and the result is Equation 9.

pi =


R
Z · T−1T , for i = L

R
K · T−1T · 1

T L−i , for 1 ≤ i < L
(9)

Equation 9 generalizes the optimal Bloom filters allocation strategy
in Monkey [22] across a significantly wider design space, which
now, in addition to tiering and leveling, also includes Lazy Leveling
as well as custom merge policies with any parameter values for K
and Z . Next, we model and map the new space-time trade-offs that
this expanded design space offers.
Zero-Result Point Lookups. We model the cost of zero-result
point lookups by plugging the generalized optimal FPRs in Equa-
tion 9 into Equation 4, simplifying into closed-form, and rearranging
in terms of R. The derivation is in Appendix B, experimental valida-
tion is in Appendix I, and the result is Equation 10. The generalized
complexity is O(Z · e−M/N) I/Os.

R = e−
M
N ·ln(2)2

· Z
T−1
T · K

1
T ·

T
T
T−1

T − 1
(10)

Point Lookups for Existing Entries. The worst-case lookup cost
to an existing key occurs when the target key is at the oldest run
at the largest level. The expected I/O cost is one I/O to this target
run plus the sum of FPRs across all other runs. We use Equation
8 to model this, and we plug in Equation 10 for R and Equation 9
for pL . The generalized complexity is O(1 + Z · e−M/N).
Memory Requirement. In Appendix C, we derive the memory
requirementM/N that guarantees that FPRs across all Levels are
lower than one. The generalized result is 1.62 bits per entry as in the
last subsection, which is well below the default ratio in mainstream
systems. In Appendix C, we show how to adapt Fluid LSM-tree to
extremely low-memory environments.
Range Lookups. A short range lookup issues at most K I/Os per
level to the smaller L−1 Levels and at mostZ I/Os to the largest level
for a total ofZ+K ·(L−1) random I/Os and a cost complexity ofO(Z+
K · (L−1)). A long range lookup continues with a sequential scan to

the relevant key range at each run issuing at least s
B sequential I/Os,

where s is the number of unique entries in the target key range.
To account for obsolete entries, the number of sequential I/Os is
amplified by a factor of 1+ 1

T for updated entries at Levels 1 to L−1
and Z for updated entries at Level L, which we model together as
Z + 1

T . The sequential scan cost is therefore at most s
B · (Z + 1

T) I/Os
with a complexity of O(s ·ZB) I/Os. The generalized range lookup
cost is given in Equation 11 as the sum of costs for short and long
range lookups weighted by the constant µ, the amount of which
sequential access is faster than random access on a given storage
devices (e.g., disk).

Q = K · (L − 1) + Z +
1
µ

·
s
B

·

(
Z +

1
T

)
(11)

Updates. In the worst case, an entry participates in O(TK) merge
operations within an active run across each of Levels 1 to L − 1,
and in O(TZ) merge operations within the active run at Level L.
The overall update cost is the sum of these terms across all levels
divided by the block size: O

(
T
B ·

(
L
K +

1
Z

))
. We model this cost

more precisely using arithmetic series to obtain Equation 12, which
we validate in Appendix I. We divide by the constant µ since the cost
of updates is incurred through sequential merge operations, and
we introduce an additional constant ϕ to account for the property
of some storage devices that writes are more expensive than reads
(e.g., flash).

W =
ϕ

µ · B
·

(
T − 1
K + 1

· (L − 1) +
T − 1
Z + 1

)
(12)

Space-Amplification. Levels 1 to L − 1 contain a fraction of 1
T of

the dataset, and so they may render up to this fraction of entries
obsolete at the largest level. In Level L, at most Z − 1 of the runs
may be completely filled with obsolete entries. We model space-
amplification as the sum of these terms in Equation 13.

amp = Z − 1 +
1
T

(13)

Mapping the Design Space. Figure 9 is an instance of conceptual
Figure 7 that uses our cost models to map the different trade-offs
with Fluid LSM-tree. We generate Part (A) of Figure 9 by plotting
point lookup cost R in Equation 10 against update costW in Equa-
tion 12. We generate Parts (B) and (C) for short and long range
lookups by plotting Q in Equation 11 against update costW in
Equation 12 for selectivities s of 10−7 and 10−6, respectively. We
leave an evaluation of space-amplification for the experimental
analysis. The configuration is fixed to a 1TB dataset with 128 byte
entries, 4KB storage blocks, and overall 10 bits per entry across the
filters5. We generate the curves for leveling, tiering, and Lazy Level-
ing by using their corresponding fixed values for the parameters K
and Z , and varying the size ratio T . The circle indicates the conver-
gence point of all three merge policies where the size ratio T is set
to two. The squares indicate a size ratio of ten, which most main-
stream key-value stores use by default in practice [29, 32], to enable
comparison of corresponding points across the three sub-figures.
The figure also illustrates two transition curves labeled Trans1 and
Trans2, which demonstrate how Fluid LSM-tree transitions fluidly

5We set N = 233, E = 27, B = 25 , and M = 10 · 233 .

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

ze
ro

-r
e
su

lt
p
o
in

t
lo

o
k
u
p

co
st

(I
/O

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

update cost (I/O)

(A)

0

10

20

30

40

50

60

70

sh
o
rt

ra
n
g
e

lo
o
k
u
p

co
st

(I
/O

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

update cost (I/O)

(B)

0

100

200

300

400

500

600

700

lo
n
g

ra
n
g
e

lo
o
k
u
p

co
st

(I
/O

)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

update cost (I/O)

(C)

leveling

tiering

lazy leveling

Trans1

tiering lazy leveling

leveling

tiering lazy leveling

leveling
Trans2

Trans2

Trans1
Trans2

Trans1

(A) (B) (C)

Figure 9: Fluidly shifting between Lazy Leveling, leveling, and tiering.

across designs thereby achieving trade-offs that would not have
been possible using a fixed merge policy.
Transition 1: Lazy Leveling to Tiering.We observe in Part (A)
of Figure 9 that the curve for Lazy Leveling has an inflection point
beyond which decreasing the size ratio degrades update cost. The
reason is that update cost isO(L+TB), and as we decreaseT the value
of L grows and comes to dominateT . In this example, the inflection
point occurs when the size ratioT is set to 5. We generate the curve
labeled Transition 1 (Trans1) by fixing T to the inflection point
value and instead varying Z from 1 to T − 1 (4 in this example).
The resulting curve dominates both Lazy Leveling and tiering for
this part of the design space until it converges with tiering. Thus,
Transition 1 enables optimal trade-offs between point lookup cost
and update cost as we transition between Lazy Leveling and tiering
to optimize more for point lookups or updates, respectively.
Transition 2: Lazy Leveling to Leveling. In order to achieve
more competitive range lookup costs with Lazy Leveling, we intro-
duce Transition 2. The idea is to varyK , the bound on runs at Levels
1 to L − 1, between 1 and T − 1 to fluidly transition between Lazy
Leveling and leveling. In Figure 9 we generate the curve labeled
Trans2 by fixing K to 4 and varying T . Part (A) shows that this
enables navigating a trade-off curve similar to Lazy Leveling, and
parts (B) and (C) show that Trans2 achieves nearly the same range
lookup cost as with leveling. Thus, Transition 2 enables fine control
over how much we optimize for short range lookups.
Problem: Finding the Best Tuning. The space of optimal space-
time trade-offs is delineated by leveling, Lazy Leveling, and tiering,
and we can reach many other trade-offs in-between by co-tuning
the parameters K , Z andT . The goal is to co-tune these parameters
to strike the best trade-off for a particular application. The challenge
is finding the optimal configuration as there are many different
combinations for these parameters6.

4.3 Dostoevsky
We now introduce Dostoevsky to find and adapt to the best tuning
of Fluid LSM-tree subject to a constraint on space-amplification.
Dostoevsky models and optimizes throughput with respect to up-
date cost W in Equation 12, zero-result point lookup cost R in
Equation 10, non-zero result point lookup cost V in Equation 8,
and range lookup costQ in Equation 11. It monitors the proportion

6The number of combinations isO ((N
B ·P)

3). The reason is that the maximum value of
T is Tl im = N

B ·P , and K and Z can both be tuned to anything between 1 and T − 1.

of these operations in the workload and weights their costs using
coefficientsw , r , v , and q, respectively. We multiply this weighted
cost by the time to read a block from storage Ω and taking the
inverse to obtain the weighted worst-case throughput τ .

τ = Ω−1 · (w ·W + r · R + v · V + q ·Q)−1 (14)

Dostoevsky maximizes Equation 14 by iterating over different
values of the parameters T , K , and Z . It prunes the search space us-
ing two insights. The first is that LSM-tree has at most Lmax levels,
each of which has a corresponding size ratioT , and so there are only
⌈log2(

N
P ·B)⌉ meaningful values ofT to test. The second insight is that

the lookup costs R, Q and V increase monotonically with respect
to K and Z , whereas update costW decreases monotonically with
respect to them. As a result, Equation 14 is convex with respect to
both K and Z , and so we can divide and conquer their value spaces
and converge to the optimum with logarithmic runtime complexity.
Overall, auto-tuning takes O (loд2(N

B ·P)
3) iterations as each parame-

ter contributes one multiplicative log factor to runtime. To satisfy
a given constraint on space-amplification, we ignore tunings for
which Equation 13 is above the constraint. Since we iterate over a
closed-form model, execution takes a fraction of a second, making
it possible to find the optimal tuning at runtime without affecting
overall system performance. We invoke auto-tuning between time
windows consisting of X buffer flushes (16 in our implementation).
A more detailed description of the adaptation workflow and the
transition overheads is given in Appendix G.

5 EVALUATION
We evaluate Dostoevsky across a range of workloads and show
that it dominates existing designs in terms of performance and
space-amplification.
Experimental Infrastructure.We use a machine with a RAID of
500GB 7200RPM disks, 32GB DDR4 main memory, 4 2.7 GHz cores
with 8MB L3 caches, running 64-bit Ubuntu 16.04 LTS on an ext4
partition with journaling turned off.
Implementation. We implemented Dostoevsky on RocksDB [29],
an LSM-tree based key-value store that is widely used in industry [8,
27]. RocksDB only supports leveling and assigns fixed FPR to Bloom
filters across all levels. We optimized the Bloom filters allocation by
embedding Equation 9 within the code. We then implemented Fluid
LSM-tree using a RocksDB API that enables listening to internal
events and scheduling merge operations using custom logic. We
implemented auto-tuning by measuring the proportion of different

10
,9
,9

10
,5
,9

10
,4
,9

8,
3,
7

5,
1,
4

5,
1,
4

4,
1,
3

5,
1,
4

7,
1,
6

8,
1,
7

10
,1
,9

15
,1
,1
4

20
,1
,1
0

50
,1
,1
0

T
,Z
,K

10
,1
,9

T
,Z
,K

10
,1
,9

10
,1
,9

10
,1
,9

10
,1
,9

10
,1
,9

10
,1
,4

6,
1,
9

10
,1
,1

30
,1
,1

10
0
,1
,1

✥ ✥ ✥ ✥

✥

✥

✥

✥

✥

✥
✥

✥
✥

✥

✯
✯

✯
✯

✯
✯

✯

✯

✯

✯

✯

✯
✯

✯

✥

✯

✯✯✯

✥✥✥ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯

✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥

✯
✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯

✥

✥

✥
✥

✥ ✥ ✥ ✥ ✥ ✥

✯ ✯ ✯ ✯ ✯ ✯

✥

✥

✥

✥

✥

✥

✯ ✯
✯

✯ ✯ ✯ ✯ ✯

✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n
o
rm

a
li
ze

d
th

ro
u
g
h
p
u
t

(o
p
s/

s)

10�2 10�1

(A) point lookups / updates

0

0.5

1

n
o
rm

a
li
ze

d
th

ro
u
g
h
p
u
t

(o
p
s/

s)

10�2 10�1

(B) point lookups / updates

Parameters
K: bound on runs at Levels 1 to L � 1
Z: bound on runs at Level L
T : size ratio

Systems
Dostoevsky
Monkey
Well-Tuned RocksDB
Default RocksDB

Existing Design Space
Tiering (T = 10)
Leveling (T = 10)

Fluid LSM-Tree New Design Space
Transition 1 (T = 10, Z = 4, K = 9)
Lazy Leveling (T = 10)
Transition 2 (T = 10, Z = 1, K = 4)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ze
ro

-r
e
s

p
o
in

t
lo

o
k
u
p

la
te

n
cy

(m
s)

0.0 0.00225 0.0045 0.00675 0.009

(C) update latency (ms)

64 TB
16 TB
1 TB

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

0.0055

0.006

u
p
d
a
te

la
te

n
cy

(m
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(D) skew coe�cient

0

10

20

30

40

50

60

70

80

90

e
x
is

ti
n
g

p
o
in

t
lo

o
k
u
p

la
te

n
cy

(m
s)

1 2 3 4 5 6 7 8 9 10

(E) bits per element

0

20

40

60

80

100

sp
a
ce

-a
m

p
li
fi
ca

ti
o
n

(%
)

0 0.2 0.4 0.6 0.8 1

(F) updates / insertions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n
o
rm

a
li
ze

d
ra

n
g
e

lo
o
k
u
p

la
te

n
cy

10�9 10�8 10�7 10�6 10�5 10�4 10�3 10�2

(G) range lookup selectivity (%)

0

0.5

1

n
o
rm

a
li
ze

d
th

ro
u
g
h
p
u
t

(o
p
s/

s)

10�910�810�710�610�510�410�310�2

(H) short range lookups / (updates & point)

Figure 10: Dostoevsky dominates existing designs by being able to strike better space-time trade-offs.

operations in the workload during time windows and feeding them
to Equation 14. We control the main memory budget by enabling
direct IO, and as key-value stores in industry [29, 32] we set the
buffer size to 2 MB, the number of bits per entry across all Bloom
filters to 10, the density of fence pointers to one per 32KB block, and
the block cache size to be 10% of the dataset size in each experiment.
Metrics. To measure the latency of updates and lookups, we moni-
tor the amount of time spent by the disk processing lookups and
merge operations, respectively, and we divide these measures by
the number of lookups and updates in each trial. We measure space-
amplification by dividing the raw data size by the volume of unique
entries inserted. Each point in the resulting figures represents an
average of three experimental trials.
Baselines. We compare Dostoevsky to RocksDB [29] and to Mon-
key [22], which represent the state-of-the-art designs in industry
and research, respectively. For RocksDB, we compare against the
default tuning (leveling with a size ratio of 10) and against our
own tuning of the size ratio to maximize throughput. We experi-
mented with Monkey as a subset of Dostoevsky with only tiering
and leveling in its design space. To enable a finer study of the design
space, we also compare among five fixed merge policies: Leveling,
Tiering, and Lazy Leveling all with a size ratio of 10 and optimized
Bloom filters, as well as Transitions 1 and 2 from Section 4.2, which
represent combinations of these policies. Write-ahead-logging is
enabled across all systems. Since all of these baselines run on top of
the RocksDB infrastructure, any variations in performance or space
are purely due to differences in data structure design and tuning.
Experimental Setup. The default setup involves inserting 1TB
of data to an empty database. Every entry is 1KB (the key is 128
bytes and the attached value is 896 bytes, which is common in
practice [8]). We compare the designs under worst-case conditions
using by default a worst-case workload consisting of uniformly

randomly distributed operations, and we vary the proportion of
updates and lookups to test the extent to which we can optimize
throughput given the contention between their costs. This is in line
with the Yahoo Cloud Service Benchmark [21], which is commonly
used to evaluate key-value stores today [39, 45, 47, 48, 53]. For
generality, we also compare the designs across workload skews. To
ensure experimental control, we begin each trial from a fresh clone,
as we discuss in more detail in Appendix F.

Dostoevsky Dominates Existing Systems. In Figure 10 (A), we
compare Dostoevsky to RocksDB and Monkey as we increase the
proportion of zero-result point lookups to updates in the workload
from 0.5% to 95% (the x-axis is log scale and the y-axis is nor-
malized to enable a clear comparison). Both versions of RocksDB
perform poorly because (1) they allocate memory uniformly across
the Bloom filters thereby incurring more I/Os due to false posi-
tives, and (2) they are restricted to using only leveling. Monkey
improves on them by optimizing the Bloom filters allocation and
also including tiering in its design space to be able to optimize more
for updates. Dostoevsky dominates these systems because Fluid
LSM-tree and Lazy Leveling enable better cost trade-offs for com-
bined workloads. The numbers above the figure show the tunings
of Dostoevsky used for each workload. These tunings are all unique
to the Lazy Leveling and Fluid LSM-tree design spaces, except at the
edges where the workload consists of mostly one type of operation.

No Single Merge Policy Rules. In Figure 10 (B), we repeat the
same experiment while comparing the different merge policies. As
the proportion of lookups increases, the best fixed policy changes
from tiering to Transition 1, then to Lazy Leveling, then to Transi-
tion 2, and finally to leveling. A fixed merge policy is only best for
one particular proportion of updates and lookups. We normalize
the y-axis based on the throughput that Dostoevsky achieves for

each workload (using the same tunings at the top of Part (A)). Dos-
toevsky dominates all fixed policies by encompassing all of them
and fluidly transitioning among them.
Dostoevsky is More Scalable. In Figure 10 (C), we compare Lazy
Leveling to the other merge policies as we increase the data size.
Point lookup cost does not increase as the data size grows because
we scale the Bloom filters’ memory budget in proportion to the data
size. The first takeaway is that Lazy Leveling achieves the same
point lookup cost as leveling while significantly reducing update
cost by eliminating most merge operations. The second takeaway
is that update cost with Lazy Leveling scales at a slower rate than
with leveling as the data size increases because it merges greedily
only at the largest level even as the number of levels grows. As a
result, Dostoevsky offers increasingly better performance relative
to state-of-the-art designs as the data size grows.
Robust Update Improvement Across Skews. In Figure 10 (D),
we evaluate the different fixed merge policies under a skewed up-
date pattern. We vary a skew coefficient whereby a fraction of c of
all updates target a fraction of 1 − c of the most recently updated
entries. The flat lines show that update cost is largely insensitive to
skew with all merge policies. The reason is that levels in LSM-tree
grow exponentially in size, and so even an update to the most recent
10% of the data traverses all levels rather than getting eliminated
prematurely while getting merged across smaller levels. Hence, the
improved update cost offered by Lazy Leveling and by Dostoevsky
by extension is robust across a wide range of temporal update skews.
We experiment with point lookup skews in Appendix H.
Robust Performance Across Memory Budgets. In Figure 10
(E), we vary the memory budget allocated to the Bloom filters and
we measure point lookup latency to existing entries. Even with
as little as one bit per entry, Lazy Leveling achieves comparable
latency to leveling, and so Dostoevsky achieves robust point lookup
performance across a wide range of memory budgets.
Lower Space-Amplification. In Figure 10 (F), we vary the pro-
portion of updates of existing entries to insertions of new entries,
and we measure space-amplification. As the proportion of updates
increases, there are more obsolete entries at larger levels, and so
space-amplification increases. We observe that space-amplification
for Lazy Leveling and Leveling increase at the same rate, despite
eliminating most merge operations. As a result, Dostoevsky is able
to achieve a given bound on space-amplification while paying a
lower toll in terms of update cost due to merging.
DominationwithRange Lookups. Figure 10 (G) compares range
lookup costs as selectivity increases. The first takeaway is that for
low selectivities, Transition 2 achieves a competitive short range
lookup cost with leveling while achieving comparable bounds on
point lookups and space-amplification (as showed in Figures 10
(C), (E) and (F), respectively). The second takeaway is that as selec-
tivity increases Lazy Leveling becomes increasingly competitive.
We demonstrate how Dostoevsky uses these designs in Figure 10
(H), where we increase the proportion of short range lookups in
the workload while keeping a fixed ratio of five updates per point
lookup. The best fixed merge policy changes from Lazy Leveling
to Transition 2 to Leveling as the proportion of range lookups
increases. Dostoevsky transitions among these policies thereby
maximizing throughput and dominating existing systems.

6 RELATEDWORK
Key-Value Stores in Industry. Mainstream key-value stores in
industry [7, 19, 29, 31, 32, 34, 48, 52] have the same architecture as
Dostoevsky: they persist data using LSM-tree and speed up point
lookups using Bloom filters. However, they are tuned suboptimally
over a small subset of the design space. LevelDB [32] hard codes
the size ratio to 10 and the merge policy to leveling. RocksDB [29]
supports leveling but not tiering. bLSM [48] restricts the number
of levels to 3 by merging more aggressively as data grows. None of
these systems optimize memory allocation across the Bloom filters
to minimize point lookup cost. Overall, it is hard to tune these
systems even within their limited design spaces as the impact of
any existing tuning parameter on performance is unclear.
Key-Value Stores in Research. Key-value stores in research ex-
pand the trade-offs that are possible to achieve and navigate. Some
designs use fractional cascading [13, 35] rather than fence point-
ers thereby trading lookup cost for memory. Bϵ -tree and variants
[2, 15, 42] use buffered in-place updates among linked nodes in-
stead of fence pointers thereby trading memory for space and range
lookup cost, as nodes are padded and non-contiguous. Other de-
signs [4, 11, 24, 25] use circular logs in storage and index them
using a hash table in memory thereby trading space for update
cost. Recent work [36] optimizes the size ratio of leveled LSM-tree
for update skew. PebblesDB [45] merges more frequently across
frequently accessed parts of the key space. Monkey [22] allocates
main memory among the Bloom filters of LSM-tree to minimize
point lookup cost, and it transitions between leveling and tiering
to maximize throughput.
Dostoevsky. Our insight is that the recent Bloom filters optimiza-
tion in Monkey [22] offers a new avenue for optimizing update cost
by relaxing merging at lower levels while keeping point lookup
cost fixed. We exploit this by introducing Lazy Leveling, which
offers better scalability trade-offs among point lookups, long range
lookups, updates, and space-amplification than we knew existed
before. We further introduce Fluid LSM-Tree and Dostoevsky to
generalize and be able to navigate the expanded design space.
Related Topics. In Appendix E, we discuss complementary tech-
niques for reducing and scheduling merge operations. We also
discuss specialized and in-memory key-value stores.

7 CONCLUSION
We show that merges in LSM-tree based key-value stores control
an intrinsic trade-off among the costs of updates, point lookups,
range lookups, and space-amplification, yet existing designs do
not strike optimal trade-offs among these metrics. The reason is
that merge operations do the same amount of maintenance work
across all levels, yet point lookups, long range lookups, and space-
amplification derive their cost mostly from the largest level. We
introduce Dostoevsky, a key-value store that offers richer space-
time trade-offs by merging as little as possible to achieve given
bounds on lookup cost and space, and we show how to find the
best trade-off for a particular application workload and hardware.

Acknowledgments.We thank the anonymous reviewers for their
valuable feedback. This work is supported by the National Science
Foundation under grant IIS-1452595.

REFERENCES
[1] A. Aggarwal and J. S. Vitter. The Input/Output Complexity of Sorting and Related

Problems. Communications of the ACM, 31(9):1116–1127, 1988.
[2] D. Agrawal, D. Ganesan, R. Sitaraman, Y. Diao, and S. Singh. Lazy-Adaptive

Tree: An Optimized Index Structure for Flash Devices. Proceedings of the VLDB
Endowment, 2(1):361–372, 2009.

[3] M. Y. Ahmad and B. Kemme. Compaction management in distributed key-value
datastores. Proceedings of the VLDB Endowment, 8(8):850–861, 2015.

[4] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Va-
sudevan. FAWN: A Fast Array of Wimpy Nodes. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages 1–14, 2009.

[5] Apache. Accumulo. https://accumulo.apache.org/.
[6] Apache. Cassandra. http://cassandra.apache.org.
[7] Apache. HBase. http://hbase.apache.org/.
[8] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. LinkBench: a

Database Benchmark Based on the Facebook Social Graph. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 1185–1196,
2013.

[9] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica. MaSM:
Efficient Online Updates in Data Warehouses. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 865–876, 2011.

[10] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R. Stoica. Online
Updates on Data Warehouses via Judicious Use of Solid-State Storage. ACM
Transactions on Database Systems (TODS), 40(1), 2015.

[11] A. Badam, K. Park, V. S. Pai, and L. L. Peterson. HashCache: Cache Storage for
the Next Billion. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 123–136, 2009.

[12] O. Balmau, D. Didona, R. Guerraoui, W. Zwaenepoel, H. Yuan, A. Arora, K. Gupta,
and P. Konka. TRIAD: Creating Synergies Between Memory, Disk and Log in
Log Structured Key-Value Stores. In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 363–375, 2017.

[13] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and
J. Nelson. Cache-Oblivious Streaming B-trees. In Proceedings of the Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 81–92, 2007.

[14] B. H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426, 1970.

[15] G. S. Brodal and R. Fagerberg. Lower Bounds for ExternalMemoryDictionaries. In
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 546–554, 2003.

[16] N. G. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,
A. Giardullo, S. Kulkarni, H. C. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s Distributed Data Store for the Social
Graph. In Proceedings of the USENIX Annual Technical Conference (ATC), pages
49–60, 2013.

[17] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(ger) Graph
Analytics on a Dataflow Engine. Proceedings of the VLDB Endowment, 8(2):161–
172, 2014.

[18] Z. Cao, S. Chen, F. Li, M. Wang, and X. S. Wang. LogKV: Exploiting Key-Value
Stores for Log Processing. In Proceedings of the Biennial Conference on Innovative
Data Systems Research (CIDR), 2013.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 205–218, 2006.

[20] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid, R. Ramakrishnan, S. Rao, and
R. Sears. Walnut: A Unified Cloud Object Store. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 743–754, 2012.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with YCSB. In Proceedings of the ACM Symposium on Cloud
Computing (SoCC), pages 143–154, 2010.

[22] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal Navigable Key-
Value Store. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 79–94, 2017.

[23] N. Dayan, P. Bonnet, and S. Idreos. GeckoFTL: Scalable Flash Translation Tech-
niques For Very Large Flash Devices. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages 327–342, 2016.

[24] B. Debnath, S. Sengupta, and J. Li. FlashStore: high throughput persistent key-
value store. Proceedings of the VLDB Endowment, 3(1-2):1414–1425, 2010.

[25] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM space skimpy key-value
store on flash-based storage. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 25–36, 2011.

[26] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Operating Systems Review, 41(6):205–220,
2007.

[27] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum. Optimiz-
ing Space Amplification in RocksDB. In Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2017.

[28] Facebook. MyRocks. http://myrocks.io/.
[29] Facebook. RocksDB. https://github.com/facebook/rocksdb.
[30] B. Fitzpatrick and A. Vorobey. Memcached: a distributed memory object caching

system. White Paper, 2011.
[31] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar. Scaling Concurrent Log-

Structured Data Stores. In Proceedings of the ACM European Conference on
Computer Systems (EuroSys), pages 32:1–32:14, 2015.

[32] Google. LevelDB. https://github.com/google/leveldb/.
[33] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kanneganti.

Incremental Organization for Data Recording and Warehousing. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), pages 16–25,
1997.

[34] A. Lakshman and P. Malik. Cassandra - A Decentralized Structured Storage
System. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[35] Y. Li, B. He, J. Yang, Q. Luo, K. Yi, and R. J. Yang. Tree Indexing on Solid State
Drives. Proceedings of the VLDB Endowment, 3(1-2):1195–1206, 2010.

[36] H. Lim, D. G. Andersen, and M. Kaminsky. Towards Accurate and Fast Evaluation
of Multi-Stage Log-structured Designs. In Proceedings of the USENIX Conference
on File and Storage Technologies (FAST), pages 149–166, 2016.

[37] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A Memory-Efficient,
High-Performance Key-Value Store. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 1–13, 2011.

[38] LinkedIn. Voldemort. http://www.project-voldemort.com.
[39] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. WiscKey:

Separating Keys from Values in SSD-conscious Storage. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), pages 133–148, 2016.

[40] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for NAND flash.
ACM/IEEE IPSN, 2007.

[41] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree
(LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[42] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas. Tucana: Design and
Implementation of a Fast and Efficient Scale-up Key-value Store. In Proceedings
of the USENIX Annual Technical Conference (ATC), pages 537–550, 2016.

[43] M. Pilman, K. Bocksrocker, L. Braun, R. Marroquin, and D. Kossmann. Fast Scans
on Key-Value Stores. Proceedings of the VLDB Endowment, 10(11):1526–1537,
2017.

[44] J. Pitman. Probability. 1999.
[45] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham. PebblesDB: Building

Key-Value Stores using Fragmented Log-Structured Merge Trees. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), pages 497–514,
2017.

[46] Redis. Online reference. http://redis.io/.
[47] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson. SlimDB: A Space-Efficient Key-

Value Storage Engine For Semi-Sorted Data. Proceedings of the VLDB Endowment,
10(13):2037–2048, 2017.

[48] R. Sears and R. Ramakrishnan. bLSM: A General Purpose Log Structured Merge
Tree. In Proceedings of the ACM SIGMOD International Conference on Management
of Data, pages 217–228, 2012.

[49] P. Shetty, R. P. Spillane, R. Malpani, B. Andrews, J. Seyster, and E. Zadok. Building
Workload-Independent Storage with VT-trees. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), pages 17–30, 2013.

[50] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. Theory and Practice of Bloom Fil-
ters for Distributed Systems. IEEE Communications Surveys & Tutorials, 14(1):131–
155, 2012.

[51] R. Thonangi and J. Yang. On Log-Structured Merge for Solid-State Drives. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE), pages
683–694, 2017.

[52] WiredTiger. Source Code. https://github.com/wiredtiger/wiredtiger.
[53] X. Wu, Y. Xu, Z. Shao, and S. Jiang. LSM-trie: An LSM-tree-based Ultra-Large

Key-Value Store for Small Data Items. In Proceedings of the USENIX Annual
Technical Conference (ATC), pages 71–82, 2015.

A OPTIMAL FALSE POSITIVE RATES
In this appendix, we derive the optimal false positive rates (FPRs)
for Fluid LSM-tree that minimize the zero-result point lookup cost.
This result can then be applied to any particular merge policy by
plugging in the appropriate parameters K and Z . First, we model
point lookup cost with respect to these parameters:

R = Z · pL + K ·

L−1∑
i=1

pi (15)

Next, we use the method of Lagrange multipliers to find the FPRs
that minimize Equation 4 subject to Equation 15 as a constraint.

Tiering Leveling Lazy Leveling
zero-res point O (T · Y) O (Y) O (Y)

existing point O (T · Y) O (Y) O (Y)

short range O (T · L) O (L) O (T · L +T · (1 −T))
long range O (s ·TB) O (sB) O (sB)

updates O (LB) O (T ·L
B)) O (L+Y ·T

B)

space-amp O (T) O (1T) O (1T)

Table 2: I/O analysis below the memory requirement.
We first express these in the standard form:

д(pL ...p1, R, K, Z) = Z · pL + K ·

L−1∑
i=1

(pi) − R

y(pL ...p1, N , T) = −
N

ln(2)2
·
T − 1
T

·

L∑
i=1

ln(pi)
T L−i

(16)

We express the Lagrangian L in terms of these functions:
L = y(pL ...p1, N , T) + λ · д(pL ...p1, R, K, Z) (17)

Next, we differentiate the Lagrangian with respect to each of the
FPRs p1...pL , and we set every partial derivative to 0. We arrive at
the following system of equations.

N
ln(2)2 · λ

= PL · Z

N
ln(2)2 · λ

= PL−i · K · T i
(18)

We equate these equations to eliminate the constants.

Z · PL = PL−1 ·T · K = PL−2 ·T
2 · K = ...

We now express all of the optimal FPRs in terms of the optimal FPR
for the largest level PL .

PL−i =
PL · Z

T i · K
Next, we express Equation R in terms of onlyT and PL by plugging
these FPRs into Equation 4. We observe that R is now expressed in
terms of a geometric series. We simplify it using the formula for
the sum of a geometric series up to L elements.

R = Z · pL +
Z · pL
T 1 +

Z · pL
T 2 + ...

R = Z · pL ·

1
T L

− 1
1
T − 1

(19)

As L grows, this converges to the following.

R = Z · pL ·
T

T − 1
(20)

As a result, the optimal false positive rates are as follow.

pi =


R
Z · T−1T , for i = L

R
K · T−1T · 1

T L−i , for 1 ≤ i < L
(21)

To get the optimal FPR assignment for Lazy Leveling as in Equa-
tion 5, we plug 1 for Z and T − 1 for K in Equation 21.

B CLOSED-FORM POINT LOOKUP COST
We now model zero-result point lookup cost in closed form by
plugging the optimal FPRs in Equation 21 into Equation 4, simplify
into closed-form by applying logarithmic operations and sums
of series (i.e., geometric and arithmetico-geometric), and finally

rearranging in terms of R, as follows.

M = −
N

ln(2)2
·
T − 1
T

·
©­«ln

(
R
Z

·
T − 1
T

)
+

L−1∑
i=1

1
T i

ln
(
R
K

·
T − 1
T

·
1

T L−i

)ª®¬
= −

N

ln(2)2
·
T − 1
T

·
©­«ln

(
R
Z

·
T − 1
T

)
+ ln ©­«

(
(T − 1) · R
T · K

) 1
T +

1
T 2 +

1
T 3 +. . .

·

(
1
T

) 1
T 1 +

2
T 2 +

3
T 3 . . . ª®¬ª®¬

= −
N

ln(2)2
·
T − 1
T

· ln ©­« 1
Z

·

(
(T − 1) · R

T

) T
(T−1)

·

(
1
K

) 1
(T−1)

·

(
1
T

) T
(T−1)2 ª®¬

=
N

ln(2)2
· ln

©­­«
Z
T−1
T · K

1
T

R
·
T

T
T−1
T − 1

ª®®¬
R = e−

M
N ·ln(2)2

· Z
T−1
T · K

1
T ·

T
T
T−1
T − 1

(22)

C MEMORY REQUIREMENT
We now generalize Fluid LSM-tree for any memory budget. We first
identify the ratio of bits per element X at which the FPR at Level L
converges to one. We plug in one for pL in Equation 21, plug the
corresponding value of R into Equation 10, and rearrange in terms
of M

N . The result is as follows.

X =
1

ln(2)2
·

(
ln(T)
T − 1

+
ln(K) − ln(Z)

T

)
(23)

If the memory ratio M/N is lower than the threshold X , we
denoteY as the number of levels from the largest down whose FPRs
have converged to one. We solve for Y by discounting the number
of entries at the largest Y levels: X = M

N ·TY . Rearranging in terms
of Y gives Equation 24, which we floor down as Y is an integer.

Y =
⌊
logT

(
N · X
M

)⌋
(24)

Fluid LSM-tree applies a bound of Z runs on the number of runs
at the largest Y + 1 levels. The optimal FPR assignment now only
applies to a smaller version of the problem at the smaller L − Y
levels, according to Equation 25.

pi =


1, for i > L − Y

R−Y ·Z
Z · T−1T , for i = L − Y

R−Y ·Z
K · T−1T · 1

T L−Y−i , for 1 ≤ i < L − Y

(25)

We adjust the cost models as follows. Zero-result point lookups
now issue I/Os to the largest Y levels, and so we get Equation 26.

R = e−
M
N ·ln(2)2 ·TY

· Z
T−1
T · K

1
T ·

T
T
T−1

T − 1
+ Y · Z (26)

Point lookups to existing entires now also access every run at the
largest Y levels, and so the I/O cost is the same as for zero-result
point lookups in Equation 26.

Range lookups issue Z I/Os to each of the largest Y levels, and
so we get Equation 27.

Q = K · (L − Y − 1) + Z · (Y + 1) +
s

µ · B
·

(
Z +

1
T

)
(27)

Updates now merge each entry in the largest Y levels T
Z times per

level, and so we get Equation 28.

W =
ϕ

µ · B
·

(
T − 1
K + 1

· (L − Y − 1) +
T − 1
Z + 1

· (Y + 1)
)

(28)

We summarize these results in Table 2. Overall, Lazy Leveling
improves the complexity of update cost compared to leveling for
all memory budgets while providing the same bounds on point

10
,9
,9

10
,5
,9

10
,4
,9

8,
3,
7

5,
1,
4

5,
1,
4

4,
1,
3

5,
1,
4

7,
1,
6

8,
1,
7

10
,1
,9

15
,1
,1
4

20
,1
,1
0

50
,1
,1
0

T
,Z
,K

✥

✯

✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯ ✯
✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥ ✥

✯

✥

✯

✥

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tr
a
n
si

ti
o
n

co
st

(d
at

a
fr

ac
ti

on
re

w
ri

tt
en

)

10�2 10�1

(A) point lookups / updates

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n
o
rm

a
li
ze

d
th

ro
u
g
h
p
u
t

(o
p
s/

se
c)

10�2 10�1

(B) point lookups / updates

Parameters
K: bound on runs at Levels 1 to L � 1
Z: bound on runs at Level L
T : size ratio

Systems
Dostoevsky
Monkey

Existing Design Space
Tiering (T = 10)
Leveling (T = 10)

Fluid LSM-Tree New Design Space
Transition 1 (T = 10, Z = 4, K = 9)
Lazy Leveling (T = 10)
Transition 2 (T = 10, Z = 1, K = 4)

0

2

4

6

8

10

12

p
o
in

t
lo

o
k
u
p

la
te

n
cy

(m
s)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(C) skew coe�cient

0.0

0.02

0.04

0.06

0.08

0.1

0.12

p
o
in

t
lo

o
k
u
p

co
st

(I
/O

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(D) update cost (I/O)

Experimental Result
Model

Figure 11: Dostoevsky dominates existing designs across workload transitions and lookup skews.
lookups, space-amplification, and long range lookups, and provid-
ing a competitive bound on short range lookups.

D RECURSIVE VS. PREEMPTIVE MERGING
A merge operation recurses to Level i if Levels 0 to i − 1 are all
at capacity. To avoid recursively copying data from smaller levels
multiple times before they get merged into Level i , it is possible to
preemptively merge all the runs that would eventually participate
in a recursive merge by detecting from the onset that Levels 0 to i−1
are all at capacity. Recursive and preemptive merging are each best
suited for different workloads. In particular, with high temporal
skew for updates, many entries in smaller runs may get eliminated
and so the merge may not trickle down to level i even if all smaller
levels are full. In this case, it is desirable not to preemptively include
Level i in the merge. On the other hand, for workloads with no
temporal skew where every entry gets merged across all levels,
preemptive merging is in fact the best strategy as it means the same
entries do not get merged recursively multiple times but only once.
In this work, our concern is managing space-time trade-offs in the
worst-case, and so we use preemptive merging as it is the optimal
strategy for the worst-case.

E RELATED TOPICS
Specialized Key-Value Stores. LSM-tree based Key-value stores
have been proposed for specialized domains such as LogKB [18]
for log processing, GeckoFTL[23] for Flash Translation Layers, and
SlimDB [47] for semi-sorted data. Our work is general-purpose, we
expect that our techniques would be able to push performance and
space trade-offs for these specialized applicationyouyous as well.
Main Memory Key-Value Stores. Key-value stores such as Re-
dis [46] and Memcached [30] store data in main memory. This work
focuses on key-value stores for secondary storage, and so it is or-
thogonal to memory based key-value stores. However, as there is a
cache hierarchy for main memory systems, we expect that such a
similar study would also benefit memory based systems.
Reducing Merge Costs. Recent designs reduce merge overheads
by merging parts of runs with the least amount of key range overlap
in the next level [12, 49, 51], or by opportunistically merging parts
of runs that had recently been read and are therefore already cached
in memory [43]. RocksDB [29] uses both techniques, and so our
implementation on top of it takes advantage of them. Walnut [20]
and WiscKey [39] store large values in a separate log to avoid
merging them repeatedly at the cost of an extra level of indirection

for lookups. This technique is compatible with Dostoevsky but it
requires a slight modification to the cost model to only account for
merging keys and for accessing the log during lookups.
Scheduling Merge Operations. To provide stable performance,
all LSM-tree based key-value stores in the literature and industry
de-amortize large merge operations by scheduling them evenly
across time. Some designs schedule fractions of merge operations
incrementally with respect to application updates [13, 35, 48], while
other designs hide the cost of merge operations by performing them
on dedicated servers [3]. LSM-trie [53] merges based on hashes of
keys to restrict overlap. Most mainstream designs partition runs
into SSTables and merge one SSTable at a time whenever a level
reaches capacity [7, 19, 29, 29, 31, 34, 48, 52]. Our implementation
on top of RocksDB takes advantage of this technique.
Unbounded Largest Level. Log-structured designs in the liter-
ature have have been proposed with fixed capacities for smaller
levels and an unbounded capacity for the largest level, e.g., SILT
[37] and MASM [9, 10]. Such designs can be thought of as consist-
ing of a small log and a larger sorted array. When the log reaches a
fixed size threshold ofX entries, it gets merged into the sorted array.
In such designs, update cost is proportional to O(N /X), meaning it
increases linearly with respect to the data size N . In contrast, Dosto-
evsky enforces fixed size ratioT among levels. Since the number of
levels grows at a logarithmic rate with respect to N , and since every
entry gets merged a constant number of times per level, update
cost logarithmic in the data size: O(logT (N)). In this work, we re-
strict the scope of analysis to the latter class of designs due to their
their logarithmic scalability property for updates, which is vital and
thereby used in all key-value stores in industry [7, 19, 29, 34, 48, 52].

F EXPERIMENTAL CONTROL
Any experimentation on LSM-trees is subject to the problem that the
cost of updates is not paid upfront but through subsequent merge
operations. Therefore, running different experimental trials on the
same dataset causes different trials to interfere with each other as
performance for a given trial is influenced by updates issued by all
the trials that preceded it. We addressed this problem differently
for the fixed designs (i.e., the curves labeled Leveling, Tiering, Lazy
Leveling, Transition 1, Transition 2, and Default RocksDB) and for
the adaptive designs (i.e., the curved labeled Dostoevsky, Monkey,
and Well-Tuned RocksDB) across the experiments in Figures 10
and 11. For the fixed designs, we created a baseline version from
whichwe created a new clone for each trial. For the adaptive designs,

we used cost models to find in advance the best tuning for the given
workload, constructed an LSM-tree with this tuning, and then ran
the experiment on it. Starting from a brand new LSM-tree for each
trial eliminated interference among the trials thereby ensuring
experimental control. Another positive feature of this approach
is that it enforced experimental control by isolating the study of
different designs from the study of how to transition among them
(which is an issue we now explain separately in Appendix G).

G DYNAMIC RUNTIME ADAPTATION
Adaptation in Dostoevsky consists of three phases: Measurement,
Computation, and Transition. In Section 4.3, we focused on the
Computation Phase. We now demonstrate the whole workflow.
Measurement Phase. The Measurement Phase in Dostoevsky is
responsible for workload detection through time windows. The
length of a window is a multiple of X buffer flushes during which
we count the number of different operations in the workload and
the average selectivities of range lookups. X is a parameter that
controls a trade-off between the speed vs. the accuracy of finding
the best tuning. In our implementation we set X to 16 by default,
though it is possible to alleviate the trade-off between speed vs.
accuracy through known smoothing techniques across the time
windows [2, 40]. This phase involves no I/O, and so it does not
contribute significantly to overall system overheads.
Computation Phase. At the end of the Measurement Phase, we
run the Computation Phase to find the optimal tuning of Fluid
LSM-tree given the workload statistics. We describe the algorithm
and its runtime characteristics in Section 4.3. In practice, runtime
takes up a fraction of a second and involves no I/O, and so this
phase does not contribute significantly to system overheads.
Transition Phase. The Transition Phase physically adapts Fluid
LSM-tree to the new target tuning found by the Computation Phase.
Our transition strategy reconciles for the fact that the I/O cost
of lookups is paid immediately whereas the I/O cost of updates
is paid later through merge operations. It does this by adapting
lazily or greedily depending on whether the new target tuning is
more update-optimized or lookup-optimized relative to the current
tuning, respectively. If the target tuning is more update-optimized,
we adapt lazily by relaxing the merge policy so that the amortized
cost of updates through subsequentmerge operations is reduced. On
the other hand, if the new target tuning is more lookup-optimized,
we trigger merge operations greedily so that subsequent lookups
become cheaper as quickly as possible.

Figure 11 (A) and (B) compare transition costs between Dosto-
evsky and Monkey across designs that are optimized for different
workloads. The values on top of Figure 11 (A) for the parameters T ,
K , and Z reflect the optimal tunings used by Dostoevsky earlier for
the experiment in Figure 10 (A) in Section 5, where we evaluated
these designs independently of transition overheads. We now factor
in transition overheads to show their impact on throughput. On
the y-axis in Figure 10 (A), we measure the pure transition cost
of Dostoevsky between adjacent designs in terms of the fraction
of the overall data that was rewritten while transitioning. Despite
some peaks, Dostoevsky merges 28% less than Monkey across all
transitions (i.e., measured by the sizes of the areas underneath the
curves). The reason is that Dostoevsky adapts across designs that
are more similar to each other (i.e., Transition 2, Lazy Leveling,

and Transition 1), whereas Monkey transitions across designs that
are comparatively more different. In other words, the Dostoevsky
design space is more dense and so optimal designs for similar work-
loads are structurally closer to each other and require less of a
transition overhead. In Figure 10 (B), we show how transition over-
heads impact throughput. For each of these trials, we started with
the structure represented by the previous point, transitioned to the
new tuning, and continued to run the workload for a combined N
update/lookup operations. We measure overall throughput includ-
ing the time taken for transitions. Dostoevsky largely outperforms
Monkey across the board because it offers more highly optimized
designs for individual workloads as well as lower transition over-
heads across these designs. In fact, had we continued to run the
workload for longer in each of these trials, the curves will have
eventually converged to the ones in Figure 10 (A) as the transition
costs become increasingly amortized during a stable workload.

Greedy transitioning is a single point in the space of possible
policies for optimizing lookups. Future work directions include pig-
gybacking transitions on regular merge operations to amortize tran-
sition costs, and scheduling transitions more cautiously to ensure
that workload periodicity and volatility do not turn transitions into
pure overhead. This topic deserves a much larger study, whereas
the current adaptive policies are a starting point to demonstrate
that the design space is worth navigating.

H ROBUST POINT LOOKUP PERFORMANCE
ACROSS SKEWS

In Figure 11 (C), we verify that our experimental results generalize
across a wide range of lookup skews. In the experiment, a fraction
of c of the lookups target the least recently inserted fraction of 1−c
of the entries. The horizontal lines show that point lookup cost is
insensitive to skew across all designs. The intuition is that most
of the data is at the largest level and so most lookups that target
recently inserted entries still reach the largest level most of the
time. As a result, the models that Dostoevsky uses to transition
across designs are robust across workload skews.

I MODEL VALIDATION
In Figure 11 (D), we validate our I/O cost models against the exper-
imental results. We created this figure by comparing the number of
I/Os per operation that we observe in practice vs. the number of
I/Os predicted by our cost models in Section 4.2. Every point along
the line labeled Experimental Result is the average taken from thou-
sands of updates and lookups. As shown, the experimental results
have a slightly higher update cost than predicted by our model.
The reason is that our model does not take account of I/Os issued
by writing to RocksDB’s log. Moreover, the experimental results
have a slightly lower zero-result point lookup cost. The reason
is that runs in RocksDB are partitioned and merged as units of
SSTables. When an SSTable is merged into the next level, it leaves
a hole in the key-space at its origin level [51]. RocksDB is aware of
such holes by maintaining the first and last key of every SSTable
in main memory, and so it eliminates the chance of a false positive
by avoiding access to the level altogether if the target key targets a
key range for which there is a hole. Despite these sources of error,
our model provides a good fit for the experimental results.

	Abstract
	1 Introduction
	2 Background
	3 Design Space and Problem Analysis
	4 Lazy Leveling, Fluid LSM-Tree, and Dostoevsky
	4.1 Lazy Leveling
	4.2 Fluid LSM-Tree
	4.3 Dostoevsky

	5 Evaluation
	6 Related Work
	7 Conclusion
	References
	A Optimal False Positive Rates
	B Closed-Form Point Lookup Cost
	C Memory Requirement
	D Recursive vs. Preemptive Merging
	E Related Topics
	F Experimental Control
	G Dynamic Runtime Adaptation
	H Robust Point Lookup Performance Across Skews
	I Model Validation

