Spooky: Granulating LSM-Tree Compactions Correctly

Niv Dayan
University of Toronto
nivdayan@cs.toronto.edu

ABSTRACT

Modern storage engines and key-value stores have come to rely on
the log-structured merge-tree (LSM-tree) as their core data struc-
ture. LSM-tree operates by gradually merge-sorting data across
levels of exponentially increasing capacities in storage. A crucial
design dimension of LSM-tree is its compaction granularity. Some
designs perform Full Merge, whereby entire levels get compacted
at once. Others perform Partial Merge, whereby smaller groups of
files with overlapping key ranges are compacted independently.
This paper shows that both strategies exhibit serious flaws. With
Full Merge, space-amplification is exorbitant. The reason is that
while compacting the LSM-tree’s largest level, there must be at
least twice as much storage space as data to store both the original
and new files until the compaction is finished. On the other hand,
Partial Merge exhibits excessive write-amplification. The reason
is twofold. (1) The files getting compacted typically do not have
perfectly overlapping key ranges, and so some non-overlapping
data is superfluously rewritten in each compaction. (2) Files with
different lifetimes become interspersed within the SSD leading to
high SSD garbage-collection overheads. As the data size grows,
these problems grow in magnitude.

We introduce Spooky, a novel compaction granulation method
to address these problems. Spooky partitions data at the largest
level into equally sized files, and it partitions data at smaller levels
based on the file boundaries at the largest level. This allows merging
one group of perfectly overlapping files at a time to limit space-
amplification and compaction overheads. At the same time, Spooky
writes larger though fewer files simultaneously so that files with
different lifetimes do not become as interspersed within the SSD.
This cheapens garbage-collection. We show empirically that Spooky
achieves >2x lower space-amplification than Full Merge and >2x
lower write-amplification than Partial Merge at the same time.
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Figure 1: Existing LSM-trees cannot reach high storage uti-
lization while maintaining moderate write-amplification.

1 INTRODUCTION

LSM-Tree. LSM-tree has become the backbone of modern key-
value stores and storage engines. It ingests key-value entries from
the application by buffering them in memory. When the buffer fills
up, it flushes these entries to storage (typically a flash-based SSD)
as a sorted array called a run. LSM-tree then compacts smaller runs
into larger ones to (1) restrict the number of runs that a query has to
search, and to (2) discard obsolete entries, for which newer versions
with the same keys have been inserted. It organizes these runs based
on their ages across levels of exponentially increasing capacities.
LSM-tree is used widely including in OLTP [37], HTAP [61], social
graphs [65], FTL design [21], data series [49-51], blockchain [30],
stream-processing [16], etc.

Compaction Granularity. The compaction policy of an LSM-tree
dictates which data to merge under which circumstances. Exist-
ing work has rigorously studied how to tune the eagerness of a
compaction policy as a means of striking different trade-offs be-
tween the costs of reads, writes, and space [22, 23, 45, 67, 70, 74, 80].
This paper focuses on an orthogonal yet crucial design dimension:
compaction granularity. Existing compaction designs can broadly
be lumped into two categories with respect to how they granu-
late compactions: Full Merge and Partial Merge [72]. Each entails a
particular flaw.

Partial Merge. With Partial Merge, each run is partitioned into
multiple small files of equal sizes. When a level reaches capacity,
one file from within that level is selected and merged into files with
overlapping key ranges at the next larger level. Partial merge is
used by default in LevelDB [35] and RocksDB [33]. Its core problem
is high write-amplification. The reason is twofold. First, the files
chosen to be merged typically do not have perfectly overlapping
key ranges. Each compaction therefore superfluously rewrites some
non-overlapping data [57]. Second, simultaneous compactions at
different levels cause files with different lifespans to become physi-
cally interspersed within the SSD [12, 28]. This makes it hard for
the SSD to perform efficient internal garbage-collection, especially
as the data size grows. We illustrate this problem in Figure 1 with
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the curve labeled Partial Merge. Write-amplification increases at an
accelerating rate as storage utilization (i.e., user data size divided
by storage capacity) increases. Figure 1 is based on an experiment
described in Sections 3.

Full Merge. With Full Merge, entire levels are merged all at once.
Full merge is used by default in Cassandra [3], HBase [4]. The core
problem is that until a merge operation is finished, the files being
merged cannot be disposed of. This means that compacting the
LSM-tree’s largest level, which is exponentially larger than the
rest, requires having twice as much storage capacity as user data
until the operation is finished. As a result, Full Merge cannot reach
a storage utilization of over 50%. It therefore wastes most of the
available storage capacity, as shown in Figure 1.

Research Problem. Figure 1 shows that neither Partial Merge nor
Full Merge can achieve a high storage utilization and moderate
write-amplification at the same time. Is it possible to bridge this
gap and attain the best of both worlds?

Spooky. We introduce Spooky: Partitioned Compaction for Key-
Value Stores. Spooky partitions the LSM-tree’s largest level into
equally-sized files, and it partitions a few of the subsequent largest
levels based on the file boundaries at the largest level. This allows
merging one group of perfectly overlapping files at a time to restrict
both space-amplification and compaction overheads. At smaller
levels, Spooky performs Full Merge to limit write-amplification
yet without inflating space requirements as these levels are ex-
ponentially smaller. In addition, Spooky writes and deletes files
sequentially within each level and across fewer levels at a time. As
a result, fewer files become physically interspersed within the SSD
to cheapen garbage-collection.

Spooky is a meta-policy: it is orthogonal to other compaction
aspects such as eagerness [22, 23, 45, 67, 69, 80] , key-value separa-
tion [15, 55, 58, 81], hardware acceleration/customization [11, 26,
717, 85, 91], performance stabilization [8, 56, 59, 74], etc. As such, it
both complements and enhances existing LSM-tree variants and
the variety of applications that they each optimize for.
Contributions. Our contributions are as follow.

(1) We posit Full and Partial Merge as the two core compaction
granulation strategies used by modern LSM-trees. We pro-
vide cost models and experiments to show that Full Merge
suffers from exorbitant space-amplification while Partial
Merge suffers from excessive write-amplification.

(2) We introduce Spooky, a new compaction granulation ap-
proach that (I) partitions data at larger levels into perfectly
overlapping groups of files that can be merged using lit-
tle extra space or superfluous work, and that (I) issues
SSD-friendly I/O patterns that cheapen garbage-collection.

(3) We show experimentally that Spooky achieves >2x lower
space-amplification than Full Merge and >2x better write-
amplification than Partial Merge at the same time.

(4) We show that Spooky’s lower write-amplification improves
both read and write throughput.

2 LSM-TREE FUNDAMENTALS

LSM-tree organizes data across L levels of exponentially increasing
capacities. Level 0 is an in-memory buffer (aka memtable). All other
levels are in storage. The capacity at Level i is T times larger than

at Level i — 1. When the largest level reaches capacity, a new larger
level is added. The number of levels L is ~ log(N/B), where N is
the data size and B is the buffer size. Figure 2 lists terms used to
describe LSM-tree throughout the paper.

For each insert, update, or delete request issued by the applica-
tion, a data entry comprising a key and a value is put in the buffer
(in case of a delete, the value is a tombstone [71]). When the buffer
fills up, it gets flushed to Level 1 as a file sorted based on its en-
tries” keys. Whenever one of the levels in storage reaches capacity,
some file from within it is merged into one of the next larger levels.
Whenever two entries with the same key are encountered during
compaction, the older one is considered obsolete and discarded.

Each file can be thought of as a static B-tree whose internal nodes
are cached in memory. There is an in-memory Bloom filter [13]
for each file to allow point reads to skip accessing files that do not
contain a given key. A point read searches the levels from smallest
to largest to find the most recent version of an entry with a given
key. A range read sort-merges entries within a specified key range
across all levels to return the most recent version of each entry in
the range to the user.

Concurrency Control. In the original LSM-tree paper, each level
is a mutable B-tree, and locks are held to transfer data from one
B-tree to another when a level reaches capacity [67]. To obviate lock-
ing bottlenecks, however, most modern LSM-trees employ multi-
version concurrency control [32]. In RocksDB, for example, a new
version object is created after each compaction/flush operation.
This object contains a list of all files active at the instant in time
that the compaction/flush finished. Point and range reads operate
over files within the version object that was newest when they
commenced to return consistent output to the user.
Space-Amplification. LSM-tree occupies more storage space than
the size of the user data. The reason is twofold. First, obsolete entries
take up space until compaction discards them. We refer to this as
durable space-amplification.

Second, multi-version concurrency control prevents the system
from reclaiming space occupied by a file until the compaction oper-
ating on this file has finished [3, 4, 33, 35]. We refer to the temporary
extra space needed during compaction to store the original and
merged data at the same time as transient space-amplification.

We distinguish between logical and physical data size as the
LSM-tree’s size before and after space-amplification (space-amp) is
considered. We define total space-amp in Equation 1 as the factor
by which the physical data size is greater than the logical data size.
Durable and transient space-amp are each defined here as a fraction
of the logical data size. The inverse of total space-amp is storage-
utilization, the fraction of the storage device that can store user
data. It is generally desirable to operate at a high storage utilization
to take advantage of the available hardware.

total space-amp = 1 + transient space-amp + durable space-amp (1)

Write-Amplification. The LSM-tree’s compactions cause each
data entry to be rewritten to storage multiple times. The average
number of times an entry is physically rewritten is known as write-
amplification (write-amp). It is generally desirable to keep write-
amp low as it consumes storage bandwidth and lifetime.

In addition to compactions, there is another important source of
write-amp for LSM-tree: SSD garbage-collection (GC) [28]. Modern
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Figure 3: DCA restricts durable space-amplification by
shrinking capacities at smaller levels based on the data size
at the largest level. This example assumes leveling.

flash-based SSDs lay out data sequentially across erase units [1, 75].
As the SSD fills up, GC kicks in to reclaim space. It does this by (1)
picking an erase unit with ideally as little remaining live data as
possible, (2) migrating any live data to other erase units, and (3)
erasing the target unit [1, 24, 36]. Hence, GC can cause data to be
rewritten multiple times.

Since GC occurs opaquely within the SSD, it has historically been
difficult to measure. Hence, most papers on LSM-tree to date only
focus on optimizing compaction overheads [22, 23, 66, 69, 70, 80].
In this paper, we emphasize that total write-amp is the product of
both sources of write-amp, as expressed in Equation 2. Hence, these
sources must be co-optimized to curb total write-amp.

total write-amp = compaction write-amp X GC write-amp (2)

Merge Policy. The compaction policy of an LSM-tree determines
which data to merge when. The two mainstream policies are known
as leveling and tiering, as illustrated in Figure 2.

With leveling, new data arriving at a level is immediately merged
with whichever overlapping data already exists at that level. As
a result, each level contains at most one sorted unit of data, also
referred to as a run. Each run consists of one or more files.

With tiering [45], each level contains multiple runs. When a
level reaches capacity, all runs within it are merged into a single
run at the next larger level. Tiering is more write-optimized than
leveling as each compaction spans fewer data. However, it is less
read-efficient as each query has to search more runs per level. It
is also less space-efficient as it takes longer to identify and discard
obsolete entries. With both leveling and tiering, the size ratio T
can be fine-tuned to control the trade-off between compaction vs.
query and space overheads [19].

Figure 2 also illustrates a hybrid policy named lazy leveling,
which applies leveling at the largest level and tiering at smaller
levels. Its write cost is similar to that of tiering while still having
similar space and point read overheads to those of leveling [22]. It
therefore offers good trade-offs in-between. We apply Spooky to all
three policies in this work to demonstrate its broad applicability.

Dynamic Capacity Adaptation (DCA). Durable space-amp ex-
hibits a pathological worst-case. When a new level is added to the
LSM-tree to accommodate more data, its capacity is set to be larger
by a factor of T than the capacity at the previously largest level.
When this happens, the data size at the new largest level is far
smaller than its capacity. As the now second largest level fills up
with new data, it can come to contain as much data as the current
data size at the largest level. In this case, durable space-amp may
be two or greater, as illustrated in Figure 3 Part (A). To remedy this,
RocksDB introduced a technique coined Dynamic Capacity Adap-
tation (DCA) [31]. As shown in Figure 3 Part (B), DCA restricts the
capacities at Levels 1 to L — 1 based on the data size rather than the
capacity at Level L. With leveling or lazy leveling, DCA bounds the
worst-case durable space-amp to the expression in Equation 3. We
leverage DCA in conjunction with Spooky throughout the paper.

®)

durable space-amp < T—1
Compaction Granularity. The granularity of compaction controls
how much data to merge in one go when a level has reached ca-
pacity. Compaction granularity is an orthogonal design dimension
to the merge policy [72]. There are two mainstream granulation
approaches: Full vs. Partial. They profoundly impact the balance
between write-amp and space-amp.

Full Merge. With Full Merge, compaction is performed at the
granularity of whole levels. Full Merge is used in Cassandra, Hbase,
and Universal Compaction in RocksDB.

Full Merge lends itself to preemption, a technique used to reduce
write-amp by predicting across how many levels the next merge op-
eration will recurse and merging them all at once [22]. Figure 4 Part
(A) illustrates an example where Levels 1 to 4, which are all nearly
full, are merged all at once. In contrast, Part (B) shows how without
preemption, a merge operation from Level 1 recurses to Level 4,
causing data originally at Levels 1 and 2 to be rewritten three and
two times, respectively. We leverage preemption in conjunction
with Full Merge throughout the paper to optimize write-amp.

The core problem with Full Merge is that while compacting the
largest level, which contains most of the data, transient space-amp
skyrockets as the original files cannot be disposed of until the
compaction is finished [63, 66].

Partial Merge. With Partial Merge, used by default in LevelDB and
RocksDB, each run is partitioned into multiple files (a.k.a. Sorted
String Tables or SSTs). When Level i fills up, some file from Level i
is picked and merged into the files with overlapping key ranges at
Level i + 1. Different methods have been proposed for how to pick
this file (e.g., randomly or round-robin). The best-known technique,
coined ChooseBest [76], picks the file that overlaps with the least
amount of data at the next larger level to minimize write-amp.
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Figure 4: Preemptive merge allows some of the data is skip
merging merged across some of the levels, thus reducing
write-amp.

For example, in Figure 5, the leftmost SST at Level L — 1 overlaps
with four SSTs at Level L, the middle with two, and the rightmost
with three. Hence, the middle file is picked. Partial Merge exhibits
lower transient space-amp than Full Merge as compaction is more
granular. However, it exhibits a higher write-amp than Full Merge
as we show in Section 3.

3 PROBLEM ANALYSIS

This section analyzes write-amp and space-amp for Full vs. Partial
Merge to formalize the problem. We assume the leveling merge pol-
icy for both baselines. We also assume uniformly random insertions
to model the worst-case write-amp.

Modeling Compaction Write-Amp. With Full Merge, the i" run
arriving at a level after the level was last empty entails a write-
amp of i to merge with the existing run at that level. After T — 1
runs arrive, a preemptive merge spanning this level takes place and
empties it again. Hence, each level contributes % . Zl.T;ll i= % to
write-amp, resulting in Equation 4.

T-1
compaction write-amp with Full Merge = - L 4)

With Partial Merge, a file picked using ChooseBest from a full
Level i intersects with ~ T/2 files’ worth of data on average at
Level i + 1 [57, 76]. The overlap among these files typically isn’t
perfect, however, leading to additional overhead. For example, in
Figure 5, the file picked from Level i with key range 56-68 does not
perfectly overlap with the two intersecting files at Level i + 1, which
have a wider combined key range of 51-70. This means that entries
at both edges of the compaction, in the ranges of 51-56 and 68-
70, are superfluously rewritten. We coin this problem superfluous
edge merging. On average, one additional file’s worth of data is
superfluously included in each compaction, leading to the write-
amp expression in Equation 5.

. . . . T+1

compaction write-amp with Partial Merge = - L (5)
Compaction Write-Amp Experiments. We verify Equations 4
and 5 using RocksDB to provide a principled comparison between
the baselines that they each represent. We use the default RocksDB
compaction policy to represent Partial Merge, and we created a
Full Preemptive Merge implementation within RocksDB!. The size
ratio T is set to 5 and the buffer size B is set to 64MB. The rest of
the implementation and setup details are in Sections 5 and 6.

!We did not use RocksDB’s Universal Compaction to represent Full Merge because it
is not a leveled merge policy but rather a bounded-depth policy (more in Section 7).
Therefore, it does not lend itself to an apples-to-apples comparison with the default
RocksDB compaction policy for our purposes.

i

levels

1
s

Figure 5: With Partial Merge, each run is partitioned into
multiple files, and smaller independent groups of intersect-
ing files are merged at a time.

Figure 6 Part (A) issues unique random insertions to an initially
empty database. The x-axis reports the number of times the buffer
has flushed (i.e., N/B). The y-axis measures write-amp for each
baseline against its model predictions. We observe that Full Merge
exhibits a lower write-amp than Partial Merge. The reasons are that
(1) it uses preemption to skip merging entries across nearly full
levels, and (2) it avoids the problem of superfluous edge merging
by compacting whole levels at a time.

Figure 6 Part (B) repeats the experiment with different size ratios
on the x-axis while fixing N/B, the number of times the buffer has
flushed, to 3500. With Full Merge, the size ratio has an approxi-
mately linear relationship to write-amp. It is therefore possible to
reduce write-amp by tuning the size ratio to smaller values. With
Partial Merge, however, write-amp cannot be reduced beyond the
global minimum shown in the figure. The reason is that with Partial
Merge, smaller size ratios cause the relative amount of superfluous
work (i.e., rewriting one file’s worth of non-overlapping data) to
increase relative to the amount of useful work performed in each
compaction (i.e., merging ~ T/2 files’ worth of overlapping data). In
summary, Full Merge exhibits lower write-amp than Partial Merge
across the board, and it is also more amenable to tuning.

Garbage-Collection Write-Amp. We now measure SSD garbage-
collection (GC) with Full vs. Partial Merge. We run a large-scale
experiment that fills up an initially empty LSM-tree with unique
random insertions followed by random updates for one day on
a 960GB SSD. We use the Linux nvme command to report the
data volume that the operating system writes to the SSD vs. the
data volume that the SSD physically writes to flash. This allows
calculating write-amp due to GC throughout the experiment. For
both baselines, the size ratio is set to 5, the buffer size to 64MB, and
DCA is turned on. The rest of the setup is given in Section 6.

Since our goal is to elicit SSD garbage-collection, it is important
to fill up the SSD so that it is stressed for free space. The Full
Merge baseline, however, is unable to utilize most of the available
storage capacity due to its high transient space-amp. We therefore
employ different logical data sizes in this experiment: 369GB and
644GB with Full and Partial Merge, respectively. As we will see, the
physical data size comes out to ~ 800GB with both baselines thus
providing us with a degree of experimental control.

Figure 7 Part (A) plots three curves for Partial Merge: (1) com-
paction write-amp, (2) GC write-amp, and (3) their product, total
write-amp. During the experiment, GC write-amp steadily increases
(up to = 3). The reason is that multiple compactions across different
levels of the LSM-tree occur simultaneously. This causes files to
become physically interspersed within the same SSD erase units.
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Figure 6: Full Merge exhibits lower write-amp than Partial
Merge as the data grows (A) and across different tunings (B).
Our cost models predict write-amp reasonably well.

Since files from different levels have exponentially varying lifes-
pans, some data in each erase unit is disposed of quickly while other
data lingers for longer. Hence, the SSD must internally migrate
older data to reclaim space. This is a manifestation of a well-known
problem of “hot” and “cold” data mixing within an SSD to inflate
GC overheads [27, 75]. We observe that while GC write-amp is far
smaller than compaction write-amp, it multiplies with it to cause
total write-amp to exceed fifty by the experiment’s end.

It is tempting to think that using larger files with Partial Merge
would eliminate these GC overheads by causing larger units of
data to be written and erased all at once across SSD erase units.
We falsify this notion later in Section 6 by showing that even with
large files, GC overheads remain high because simultaneous partial
compactions still cause files from different levels to mix physically.

For Full Merge, the figure only depicts compaction write-amp
as no GC write-amp was detected. The reason is that Full Merge
writes one large file at a time. The SSD erase units that store this
large file also get cleared all at once when this file is deleted. This
allows the SSD to reclaim space without migrating data internally.
Measuring and Modeling Space-Amp. Figure 7 Part (B) reports
the physical data size of each baseline for the same experiment as
in Figure 7 Part (A). With Full Merge, the curve is sawtooth-shaped
since compactions into the LSM-tree’s largest level occasionally
cause transient space-amp to skyrocket. In contrast, the curve for
Partial Merge is smooth because compactions are more granular.
The physical data size for both baselines is approximately equal
even though the Partial Merge baseline accommodates nearly twice
as much logical data.

We provide space-amp models for Partial and Full merge in
Equations 6 and 7 to enable an analytical comparison. The term
ﬁ in both equations accounts for the worst-case durable space-
amp from Equation 3. Otherwise, space-amp with Full Merge is
higher by an additive factor of one to account for the fact that its
transient space-amp occasionally requires as much extra space as
the logical data size. By contrast, transient space-amp with Partial
Merge is assumed here to be negligible due to the small file sizes
used (i.e., typically 2-64MB).

(6)
™)

maximum space-amp with Partial Merge = 1 +

T-1

maximum space-amp with Full Merge = 2 + 71

Scalability with Data Size. Figure 1 in Section 1 repeats the exper-
iment in Figure 7 while varying storage utilization. The size ratio
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Figure 7: Partial Merge exhibits skyrocketing write-amp as
we approach device capacity (A), while Full Merge wastes
most of the available storage capacity (B).

is set to ten this time, and we run each trial for at least one day for
write-amp to converge. For each trial, we report storage-utilization
on the x-axis against total write-amp on the y-axis. For Partial
Merge, total write-amp increases at an accelerating rate as storage
utilization increases. This is a well-known phenomenon with SSDs:
as they fill up, erase blocks with little remaining live data become
increasingly hard to find [75]. GC migration overheads therefore
increase rapidly. The outcome is that each additional byte of user
data costs disproportionately more to store in terms of forgone per-
formance. In contrast, Full Merge maintains a low total write-amp
but is unable to reach a storage utilization of over 50%.

Problem Summary. Full Merge exhibits exorbitant space-amp. On
the other hand, Partial Merge exhibits massive write-amp as storage
utilization increases. Can we devise a new compaction granulation
approach that enables high storage utilization and moderate write-
amp at the same time?

4 SPOOKY

We introduce Spooky, a new method of granulating LSM-tree merge
operations that eliminates the contention between write-amp and
space-amp. As shown in Figure 8, Spooky comprises six design
decisions. (1) It partitions the largest level into equally-sized files,
and (2) it partitions a few of the subsequent largest levels based on
the file boundaries at the largest level. (3) This allows Spooky to per-
form partitioned merge, namely compacting one group of perfectly
overlapping files at a time across the largest levels to restrict both
write-amp and space-amp. (4) At smaller levels, Spooky performs
full preemptive merge. This improves write-amp without harming
space-amp as these levels are exponentially smaller. (5) Spooky
restricts the number of files being simultaneously written to the
SSD to limit the mixing of hot and cold data within the same SSD
erase blocks. (6) Within each level, Spooky writes data sequentially
and later disposes of it sequentially as well. Hence, large swaths of
data written sequentially to the SSD are also deleted sequentially.
This allows the SSD to reclaim space more cheaply.

For ease of exposition, Section 4.1 describes a limited form of
Spooky that performs partitioned merge only at the largest two
levels. Section 4.2 generalizes Spooky to perform partitioned merge
across more levels to further reduce space overheads. Section 4.3
focuses on Spooky’s ability to accommodate skewed workloads.
Sections 4.1 to 4.3 assume the leveled merge policy, and Section 4.4
extends Spooky to tiered and hybrid merge policies.
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4.1 Two-Level Spooky

Two-Level Spooky (2L-Spooky) performs partitioned merge across
the largest two levels of an LSM-tree as shown in Figure 8. Level L
(the largest level) is partitioned into files, each of which comprises
at most Ni/T bytes, where Ny, is the data size at Level L and T is
the LSM-tree’s size ratio. This divides Level L into at least T files
of approximately equal sizes. Level L — 1 (the second largest level)
is also partitioned into files such that the key range at each file
overlaps with at most one file at Level L. This allows merging one
pair of overlapping files at a time across the largest two levels.
At Levels 0 to L — 1, 2L-Spooky performs full preemptive merge.
Algorithm 1 describes 2L-Spooky’s workflow, which is invoked
whenever the buffer fills up and decides which files to merge in
response. Let us go through its steps in detail.

Full Preemptive Merge at Smaller Levels. Algorithm 1 first picks
some full preemptive merge operation to perform along Levels 0
to L — 1. Specifically, It chooses the smallest level g in the range
1 < g < L — 1 that wouldn’t reach capacity if we merged all data at
smaller levels into it (Line 2). It then compacts all data at Levels 0
to g and places the resulting run at Level g (Lines 3-7).

Dividing Merge. A compaction into Level L —1 is coined a dividing
merge. A run written by a dividing merge is partitioned such that
each output file perfectly overlaps with at most one file at Level L
(Lines 6-7). On the other hand, any run written at Levels 1 to L — 2
is stored as one file (Line 4).

Partitioned Merge. When Level L — 1 reaches capacity (Line 8),
2L-Spooky triggers a partitioned merge. As shown in Figure 8, this
involves merging one pair of overlapping files from Levels L — 1
and L at a time into Level L (Lines 9-11). If the projected size of an
output file is greater than Ni/T, the output is split into two equally-
sized files (Line 10). The pairs of files are merged in the order of the
keys they contain. This ensures that data is written and disposed
of in the same order.

Seamless Adaptation. Under skewed deletes, one file may abruptly
shrink causing the others to become relatively larger. In this case,
Spooky splits any file that is now greater than the maximum file
size (NL/T bytes) into two during the next partitioned merge. If the
cumulative size of two or more adjacent pairs of overlapping files
at Levels L — 1 and L is lower than the maximum file size, we merge
them all into one file at Level L during the next partitioned merge.

1 Function Merge_Workflow( ):

2 int target_Ivl = smallest level g such that 1 < ¢ < L —1and
Cq< 3T,

3 if target_Ivl < L-1then

4 ‘ merge_into_one_file(0, target_lvl)

5 else if target vl == L-1 then

6 array<key> boundaries = get_largest_level_file_boundaries()

7 ‘ merge_and_partition_output(0, L-1, boundaries)

8 if Np—1 > Cr-1 then

9 for pair p of overlapping files at Levels L — 1 and L do

int filepax = Cr—1

merge(p, filemax)

12 if Np > Cr then

13 add a new level with capacity Cr41 =Cr - T
14 ‘ increment L

15 else if N < Cr/T then

set capacity of Level L — 1to Cr. /T and remove Level L
decrement L

18 fori=L-1;L >1;i——do

19 | Ci=Np/TH

Algorithm 1: Compaction workflow for 2L-Spooky.

Hence, all files at Level L have similar sizes between N./(T-2) and
NL/T bytes. We omit these details from Algorithm 1 for readability.
These file adjustments occur seamlessly during partitioned merge
operations and therefore involve no additional overhead.

Evolving the Tree. After a partitioned merge, Algorithm 1 checks
if Level L is now at capacity. If so, we add a new level (Lines 12-
14). On the other hand, if many deletes took place and the largest
level significantly shrank, we remove one level (Lines 15-17). If the
number of levels changed, the run at the previously largest level is
placed at the new largest level. We then perform dynamic capacity
adaptation to restrict durable space-amp (Lines 18-19).

Write-Amp Analysis. The full preemptive merge operations at
smaller levels achieve the modest write-amp of Full Merge across
Levels 1to L — 2. At Level L — 1, each entry is rewritten one extra
time relative to pure Full Merge. The reason is that Level L — 1
has to reach capacity before a partitioned merge is triggered (i.e.,
there is no preemption at Level L — 1). At Level L, the absence of
overlap across different pairs of files prevents superfluous rewriting
of non-overlapping data and thus keeps write-amp on par with Full
Merge. Hence, 2L-Spooky increases write-amp by an additive factor
of one relative to Full Merge, as stated in Equation 8.

write-amp with 2L-Spooky = L - ! +1 (8)
Design for Low SSD Garbage-Collection Overheads. With our
design so far, at most three files can be simultaneously written to
storage: one due to the buffer flushing, one due to a full preemptive
merge, and one due to a partitioned merge. Hence, at most three
files can become physically interspersed within the underlying
SSD. In addition, Spooky writes data sequentially at every level
and later disposes of it in the same order. As long as there are
no concurrent writes from other running applications, this design
cheapens SSD garbage-collection as large contiguous storage areas
that are written at the same time tend to also be cleared at the
same time. GC overheads are harder to reason about analytically as
they depend on the particular SSD firmware, which is opaque. We
therefore measure Spooky’s impact on GC empirically in Section 6.
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Figure 9: 2L-Spooky significantly improves space-amp rela-
tive to Full Merge and write-amp relative to Partial Merge.

Transient Space-Amp Analysis. A dividing merge and a par-
titioned merge never occur at the same time, yet they are both
the bottlenecks in terms of transient space-amp. Hence, transient
space-amp for the system is lower bounded by the expression
max(filemax, CL—1)/NL. The term fileyqx denotes the maximum
file size at Level L and controls transient space-amp for a partitioned
merge. The term Cr_; denotes the capacity at Level L — 1 and con-
trols transient space-amp for a dividing merge. Note that while it
is possible to decrease filepmqx to lower transient space-amp for a
partitioned merge, the overall transient space-amp would still be
lower bounded by Cr_1, and so setting filemax to be lower than
Cr-1 is inconsequential. This explains our motivation for setting
filemax to Cr—1 = Np /T (Line 10). The overall transient space-amp
for 2L-Spooky is therefore 1/T.
Total Space-Amp Analysis. Due to dynamic capacity adapta-
tion, Spooky’s durable space-amp is upper-bounded by Equation
3. We plug it along with Spooky’s transient space-amp of 1/T into
Equation 1 to obtain Spooky’s total space-amp in Equation 9.
1 1

space-amp with 2L-Spooky = 1 + T + T—1 )
Summary. Figure 9 Part (A) plots 2L-Spooky’s write-amp against
Full and Partial Merge (Egs. 5, 4, and 8) as we vary the size ratio. The
data size N is assumed to be 1TB while the buffer size B is 64MB.
2L-Spooky significantly reduces write-amp relative to Partial Merge
while almost matching Full Merge. Note that the figure ignores the
impact of SSD garbage-collection and therefore understates the
total write-amp differences between these baselines.

Figure 9 Part (B) plots storage utilization, the inverse of space-
amp, for all three baselines (Egs. 7, 6 and 9). 2L-Spooky improves
space-utilization compared with Full Merge by 10% to 30% depend-
ing on the tuning of T. Compared with partial merge, however,
space-utilization with 2L-Spooky is ~ 10% worse across the board.

In summary, while 2L-Spooky enables new attractive write/space
cost balances, its write-amp is still higher than with Full Merge by
one and its space-utilization is higher than with Partial Merge by
~ 10%. It therefore leaves something to be desired. We improve it
further in Section 4.2.

4.2 Generalizing Spooky for Better Trade-Offs

In Section 4.1, we saw that dividing merge operations into Level
L — 1 create a lower bound of 1/T on transient space-amp. To recap,
the reason is that Level L — 1 comprises a fraction of 1/T of the data
size. This level is rewritten from scratch during each dividing merge
operation, and the input files cannot be deleted until the merge

1 Function Merge Workflow:

2 array<key> boundaries = get_largest_level_file_boundaries()
3 int target_lvl = smallest level g such that 1 < g < X and
Cq<IL N;
4 if target_Ivl < X then
5 ‘ merge_into_one_file(0, target_lvl)
6 else if target Ivl == X then
7 ‘ merge_and_partition_output(0, X, boundaries)
8 if Nx > Cx then
9 target_lvl = smallest level z such that X +1 < z < L and
C, < X%  N;.If no such level exists, however, pick Level L.
10 for partition p of intersecting files at Levels X to z do
11 if X +1 < target_lvl < L —1then
12 ‘ merge(p, boundaries)
13 else if target_lvl == L then
14 int filepax=Cx
15 ‘ merge(p, filemax)
16 if Np > Cr then
17 add a new level with capacity Cr41 =Cr - T
18 ‘ increment L
19 else if Np < Cr/T then
20 set capacity of Level L — 1to Cr /T and remove Level L
21 decrement L
22 fori=L-1;L >1;i——do
23 | Ci=Np/T

Algorithm 2: Spooky’s generalized merge workflow.

is complete. This section generalizes Spooky to support dividing
merge operations into any level to overcome this bound.
Algorithm 2 describes Spooky’s generalized compaction work-
flow. The workflow takes a parameter X, which determines the
level into which we perform dividing merge operations. Level X is
the smallest level at which we start partitioning runs based on the
file boundaries at Level L (the largest level). For example, X, is set
to L — 1 in Figure 8 and to L — 2 in Figure 10. In addition, we now
partition Level L into files whose sizes are dictated by the capacity
at Level X (i.e., at most Cx = Ny /TL™X bytes each).
Merging at Smaller Levels. Algorithm 2 is different from Algo-
rithm 1 in that full preemptive merge operations only take place
along levels 0 to X — 1 while dividing merge operations now take
place into Level X (rather than into Level L — 1 as before). All else
is the same as in Algorithm 1.

Partitioned Preemptive Merge. When Level X fills up, Spooky
performs a partitioned merge operation along the largest L — X
levels, one group of at most L — X perfectly overlapping files at a
time. An important design decision in the generalized workflow
is to combine the idea preemption with partitioned merge to limit
the write-amp emanating from larger levels. Specifically, when
Level X is full, Algorithm 2 picks the smallest level z in the range
X +1 < z < L that would not reach capacity if we merged all
data within this range of levels into it (Line 9). Then, one group
of overlapping files across Levels X to z is merged at a time into
Level z. If the target Level z is not the largest level, the resulting
run is partitioned based on the file boundaries at the largest level
(Lines 11-12) to facilitate future partitioned merge operations.

Example. In Figure 10, X is set to L — 2. In Part (A), the cumulative
data size at Levels L — 2 and L — 1 does not exceed the capacity at
Level L — 1, and so we merge one pair of files from Levels L — 2
and L — 1 at a time into Level L — 1. In Part (B), however, the data
size at Levels L — 2 and L — 1 does exceed the capacity at Level
L — 1, and so Level L is chosen as the target. We therefore merge
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Figure 10: Spooky performs partitioned preemptive merge along larger levels to lower write-amp.

three overlapping files from Levels L — 2, L — 1 and L at a time into
Level L. In this case, preemption allows us to merge the data from
Level L — 2 once rather than twice on the way to Level L.

Write-Amp Analysis. At Levels 1 to X — 1, full preemptive merge
operations keep write-amp on par with our Full Merge baseline.
At Level X, each entry is rewritten one extra time relative to Full
Merge as there is no preemption at this level. At Levels X + 1 to L,
write-amp is the same as with Full Merge as we effectively perform
full preemptive merge across groups of perfectly overlapping files.
Hence, write-amp is the same as for 2L-Spooky in Equation 8. By
setting X to Level L, Spooky becomes identical to Full Merge and
can therefore be seen as a generalization of this baseline.

X=L

) ) T-1 [o
write-amp with Spooky =L - —— + . (10)
2 1 otherwise

Total Space-Amp Analysis. A partitioned merge entails a tran-
sient space-amp of at most —— as Level L is partitioned into at

T
least TLX files of approximately equal sizes. A dividing merge

operation also entails a transient space-amp of TL+X as the capac-

ity at this level is a fraction of TL+X of the data size. The overall
transient space-amp, which is the maximum of these two expres-
sions, is therefore also TL;*X By plugging this expression along
with Equation 3 for durable space-amp into Equation 1, we obtain
Spooky’s total space-amp in Equation 11.
1 1

space-amp with Spooky = 1 + TIX + T—1 (11)
Controlling the Number of Open Files. While decreasing the
parameter X reduces transient space-amplification, it also increases
the number of files in the system. Many operating systems limit the
number of files that can be simultaneously open to safeguard against
resource over-utilization. It is important not to exceed this amount
to prevent the system from crashing. We provide Equation 12 to
model the maximum number of files with respect to X. The intuition
for the equation is that Spooky performs partitioned merge across
the largest (L — X) levels, each of which contains TL=X files. In
addition, there is one file across each of the smaller (X —1) levels. In
section 6, we show that tuning X to L — 2 provides a good practical
balance between transient space-amp and the number of open files.
Such a tuning also ensures that metadata volume remains modest
and that files remain large enough to be written to storage using
large sequential writes.

maximum number of files = (L — X) - TV X + (X - 1) (12)

New Space/Write Trade-Offs. Overall, Spooky significantly im-
proves write-amplification relative to Partial Merge while slightly

levels : levels
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o
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Figure 11: Spooky optimizes for skewed writes by avoiding
compactions of non-overlapping files.

increasing transient space-amplification. At the same time, Spooky
significantly improves space-amplification relative to Full Merge
while slightly increasing write-amplification. Overall, Spooky pro-
vides new and improved trade-offs in-between.

4.3 Optimizing for Skew

So far, we have been analyzing Spooky under the assumption of uni-
formly random insertions to reason about the worst-care write-amp
and quality of service guarantees. With skewed updates, however,
Spooky provides additional advantages. Specifically, Spooky avoids
having to compact files at larger levels (X + 1 to L) that do not
overlap with newer updates during a partitioned merge. Figure 11
Part (A) illustrates an example with 2L-Spooky. As shown, all newer
data at Level L — 1 overlaps with just one of the files at Level L.
Spooky therefore only compacts the two overlapping files while
leaving all other files untouched during the next partitioned merge.
In contrast, Full Merge would have to rewrite all of Level L as it
stores every level as one file. Hence, Spooky not only matches Full
Merge in the worst-case but also improves on it in the skewed case.

Spooky also allows dividing data at smaller levels into multiple
files to optimize for skew. In Figure 11 Part (B), for instance, the
buffer is flushed into Level 1, though its contents do not intersect
with the existing file at Level 1. They are therefore flushed as a
new small file rather than being compacted into the existing file at
Level 1. This feature is particularly useful for handling sequential
writes in the key space efficiently.

4.4 Supporting Tiered & Hybrid Merge Policies

While we have focused so far on how to apply Spooky to the leveled
merge policy, our overarching vision is towards navigable systems
that can learn and adapt across a wide design space to optimize for
different workloads [6, 38-43]. Hence, it is important to show that
Spooky generalizes to other merge policies as well. Figure 12 Part
(A) shows how to do so with lazy leveling, which consists of one run
at the largest level and multiple runs at each of the smaller levels.
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Figure 12: Spooky is compatible with any merge policy, in-
cluding tiered and hybrid ones.

This example assumes 2L-Spooky to visualize the core idea clearly.
Each shading corresponds to a disjoint part of the key space. As
shown, each dividing merge operation compacts all data at Levels
0to L — 2 into a new run at Level L — 1, and it partitions this run
based on the file boundaries at Level L. During a partitioned merge,
we draw one overlapping group of files from each of the runs at
Level L — 1 and compact them with the corresponding file at Level
L. This design allows benefiting from even lower write-amp than
before while still providing the same space-amp guarantees.

Figure 12 Part (B) applies Spooky to the tiered merge policy.
Level L consists of multiple runs, and the data at both Levels L — 1
and L is partitioned based on the file boundaries at the oldest run at
Level L. A dividing merge operation compacts all data at Levels 0 to
L — 2 into a new run at Level L — 1. During a partitioned merge, we
add one run to Level L by merging one group of overlapping files
from level L — 1 at a time into Level L. This design trades durable
space-amp for even better write-amp guarantees. This instance
of Spooky represents an improved version of LWC-tree [83, 84],
which carefully orchestrates merge operations across larger levels
to restrict transient space-amp while executing them at a large
enough granularity that garbage-collection overheads within the
SSD are mitigated.

5 IMPLEMENTATION

This section discusses Spooky’s implementation within RocksDB.
Encapsulation. There is an abstract compaction_picker.h class
within RocksDB. Its role is to implement the logic of which files to
compact under which conditions and how to partition the output
into new files. We implemented Spooky by inheriting from this class
and implementing the logic of Algorithm 2. Our implementation is
therefore encapsulated in one file. This highlights an advantage of
Spooky from an engineering perspective as it leaves all other system
aspects (e.g., recovery, concurrency control, etc.) unchanged.
rLevels. We refer to levels in the RocksDB implementation as
rLevels to prevent ambiguity with levels in our LSM-tree formal-
ization introduced in Section 2.

rLevel 0. In RocksDB, rLevel 0 is the first rLevel in storage, and it
is special: it is the only rLevel whose constituent files may overlap
in terms of the keys they contain. When rLevel 0 has accrued «
files flushed from the buffer, the compaction picker, and hence our
Algorithm 2, is invoked. Once there are f files at rLevel 0, write
throttling is turned on. When there are y files at rLevel 0, the sys-
tem stalls to allow ongoing compactions to finish. We tune these
parameters to & = 4, f = 4 and y = 9 throughout our experiments?.
Note that in effect, rLevel 0 can be seen as an extension of the buffer,

2In the RocksDB code, « is referred to as level0_file num_compaction_trigger, f as
level0_slowdown_writes_trigger, and y as level0_stop_writes_trigger.

and so it loosely corresponds to Level 0 in our LSM-tree formaliza-
tion from Section 2. Flushing the buffer to rLevel 0 contributes an
additive factor of one to write-amp, and so our implementation has
a higher write-amp by one than the earlier write-models models
(in Egs. 8 and 10).

Level to rLevel Mappings. In RocksDB, all rLevels except rLevel
0 can only store one run (i.e., a non-overlapping collection of files).
To support tiered and hybrid merge policies, whereby each level can
contain multiple runs, we had to overcome this constraint. We did
so by mapping each level in our LSM-tree formalization to one or
more consecutive RocksDB rLevels. For example, in a tiered merge
policy, Level 1 in our formalization corresponds to rLevels 1 to T,
Level 2 torLevels T+ 1to 2T, etc.

Assuming Tiered/Hybrid Merge Policies. Our implementation
has a parameter G for the number of greedy levels from largest
to smallest that employ the leveling merge policy. Hence, when
G > L, we have pure leveling, when G = 0 we have pure tiering,
and when G = 1 we have lazy leveling. Thus, our implementation
can assume different merge policies with different trade-offs for
various application scenarios. The size ratio T can further be varied
to fine-tune these trade-offs.

Full Merge. For our full merge baseline, we use our Spooky im-
plementation yet with partitioned merge turned off. Hence, full
preemptive merge is performed across all levels.

Avoiding Stalling. RocksDB’s default compaction policy can per-
form internal rLevel 0 compactions, whereby multiple files at rLevel
0 are compacted into a single file that gets placed back at Level 0.
The goal is to prevent the system from stalling when rLevel 0 is full
(i.e., has y files) yet there is an ongoing compaction into rLevel 1
that must finish before we trigger a new compaction from rLevel 0
to rLevel 1. We also enable rLevel 0 compactions within our Spooky
implementation to prevent stalling. Specifically, whenever a full
preemptive merge is taking place and we already have a or more
files of approximately equal sizes, created consecutively, and not
currently being merged, we compact these files into one file, which
gets placed back at rLevel 0.

Concurrency. Our implementation follows RocksDB in that each
compaction runs on background thread/s. We use the sub-comp-
action feature of RocksDB to partition large compactions across
multiple threads. Our design allows for partitioned compactions,
full preemptive compactions, and Level 0 compactions to run con-
currently. Hence, there can be at most three compactions running
simultaneously, though each of these compactions may be further
parallelized using sub-compactions.

6 EVALUATION

We now show experimentally that Spooky is the only compaction
granulation strategy that achieves high storage utilization, moder-
ate write-amp, and high performance at the same time.
Platform. Our machine has an 11th Gen Intel i7-11700 CPU with
sixteen 2.50GHz cores. The memory hierarchy consists of 48 KB of
L1 cache, 512 KB of L2 cache, 16 MB of L3 cache, and 64GB of DDR
memory. An Ubuntu 18.04.4 LTS operating system is installed on a
240GB KIOXIA EXCERIA SATA SSD. The experiments are running
on a 960GB Samsung NVME SSD model MZ1L2960HCJR-00A07
with the ext4 file system.
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Figure 13: Full Merge exhibits low write-amp but cannot reach high storage utilization. Partial Merge can reach high storage
utilization at the expense of high write-amp. Spooky is the only compaction granulation scheme that achieves high storage
utilization, moderate write-amp, and good performance at the same time.

Setup. We use db_bench to run all experiments as it is the stan-
dard tool used to benchmark RocksDB. Every entry consists of a
randomly generated 16B key and a 512B value. Unless otherwise
mentioned, all baselines use the leveling merge policy, a size ratio
of 5, and a memtable size of 64MB. Bloom filters are enabled and
assigned 10 bits per entry. Dynamic capacity adaptation is applied
for all baselines. The data block size is 4KB. We use one application
thread to issue inserts/updates, and we employ sixteen background
threads to parallelize compactions.

We use the implementation from Section 5 to represent Spooky
and Full Merge. For Spooky, we set the parameter X, the level into
which Spooky performs dividing merge operations, to L — 2, the
third largest level, though we also later experiment with other
tunings of X. For Partial Merge, we use the standard compaction
policy of RocksDB with the default file size of 64MB.

Experimental Control. Before each experimental trial, we delete
the database from the previous trial and reset the SSD using the
fstrim command. This allows the SSD to reclaim space internally.
We then fill up the drive from scratch for the next trial. This ensures
that subsequent experimental trials do not impact each other.

To elicit and measure the influence of SSD garbage-collection, it
is crucial to run all experiments at a high storage utilization so that
the SSD is stressed for free space. However, our Full Merge baseline
is unable to reach a storage utilization of over 50%, which is also
its core flaw. For this reason, the Full Merge baseline employs a
smaller logical data size in some experiments.

Performance Monitoring. We run the du Linux command to
monitor the physical database size every five seconds. We also run
the nvme command every two minutes to report the SSD’s internal
garbage-collection write-amp. We use RocksDB’s internal statistics
to report the number of bytes flushed and compacted every two
minutes to allow computing write-amp due to compactions. We
use db_bench to report throughput for queries and updates.

Spooky Enables High Storage Utilization. Figure 13 Parts (A)
to (D) measure space and write-amplification over time for the
different baseline as we issue unique uniformly random insertions
followed by uniformly random updates for one day.

Part (A) shows that Partial Merge exhibits negligible transient
space-amp, so it can store more logical data (644GB in this case).
In contrast, Full Merge exhibits a sawtooth-shaped curve due to
its massive transient space-amp. It can therefore support a smaller
logical data size (369GB in this experiment). For Spooky, the curve is
also sawtooth-shaped due to its partitioned merge operations. The
teeth are significantly smaller than with Full Merge, though, due to
the finer merge granularity. This allows Spooky to match Partial
Merge in terms of logical data size (also 644GB in this experiment).

Spooky Reduces Compaction Overheads. Figure 13 Part (B)
measures write-amp due to compaction operations over time. Write-
amp with Spooky is slightly higher than with Full Merge since
Spooky stores ~ 2x more logical data. At the same time, Spooky
improves on Partial Merge by ~ 30% while matching it in terms of
logical data size. The reason is that Spooky eliminates superfluous
edge merging while leveraging preemption across most levels.

Spooky Reduces Garbage-Collection. Figure 13 Part (C) mea-
sures the SSD’s garbage-collection write-amp over time. Full Merge
exhibits no overheads since all writes and deletes are large and
sequential, and because the data size is smaller so the SSD is not
stressed for free space. Partial Merge exhibits the highest overheads
because its many simultaneous small compactions cause many files
with different lifespans to become interspersed within the same SSD
erase units. With Spooky, garbage-collection is significantly cheaper.
The reason is that it writes fewer though larger files simultaneously.
This leads to less interspersing of files with disparate lifespans
within the SSD and hence > 2x cheaper garbage-collection.
Figure 13 Part (D) reports total write-up, the product of the write-
amps due to compaction and garbage-collection from Parts (B) and
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Figure 14: Spooky is compatible across a wide spectrum of compaction policies, including tiering and lazy leveling (Parts A-C).
Spooky generally works best with X = L — 2 to balance transient space-amp and the number of open files (Part D).
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Figure 15: Large files with Partial Merge cause the system to
crash due to transient space-amp (A). With the largest file
size we tried that did not crash (2GB), SSD garbage-collection
is still a severe performance issue (B).

(C). Spooky reduces total write-amp by ~ x2.5 relative to Partial
Merge while matching it in terms of logical data size.

Spooky Improves Read/Write Performance. The top table in
Figure 13 Part (E) compares throughput for the three baselines with
a uniform workload (to three significant figures). The point reads
and seek measurements were gathered by adding one thread to
issue queries in parallel to the thread issuing writes.

Spooky improves update throughput relative to partial merge
by approximately the same factor by which it improves on its total
write-amp. This shows that reductions in total write-amp translate
to direct improvements in write throughput.

Furthermore, Spooky significantly improves query performance
relative to Partial Merge because there is less background write-
amp to impede queries. Full Merge exhibits the best throughput
results overall, but this is because its dataset is smaller. The 99.9 per-
centile latency in Figure 13 Part (F) shows that Spooky’s throughput
improvements do not involve a sacrifice in performance stability.
Spooky Improves Skewed Workloads. We extended db_bench
to support Zipfian workloads and ran an experiment that first fills
up a database with uniformly random unique insertions followed by
ten hours of Zipfian point updates. The Zipf distribution parameter
is set to one. The hot keys are randomly distributed across the
key space, and they change every two hours to reflect changing
hotspots. As in previous experiments, Spooky and Partial Merge
employ a logical data size of 644GB while Full Merge uses a smaller
logical data size of 369GB.

Figures 13 Parts (G) shows write-amplification arising from com-
paction operations of the LSM-tree, while Part (H) shows total
write-amplification, which also accounts for SSD garbage-collection.
Spooky significantly improves on Partial Merge while being able

to store the same data size. The bottom part of Figure 13 Part (E)
gives throughput measurements for Zipfian writes, point reads, and
seeks. Again, Spooky significantly improves on Partial Merge and
almost matches Full Merge while being able to store nearly 2x more
data.

Spooky Applies Across Numerous Merge Policies. Figures 15
Parts (A) to (C) evaluate Spooky with the Tiered and Lazy Leveled
merge policies, described in Section 4.4, along with the previous
leveled strategies. All baselines have 250GB of logical data, and
the workload is uniformly random. Relative to Full Merge, Spooky
significantly reduces transient space-amplification without signifi-
cantly impacting write-amplification for any merge policy.

Figures 15 Part (C) provides corresponding throughput figures
for writes as well as for point reads and seeks issued from a parallel
thread. From the theory, we would expect the leveling baselines to
exhibit the best read performance as there are fewer runs to access.
Interestingly, we observe that leveled partial merge (RocksDB’s de-
fault compaction policy) exhibits the worse read performance. The
reason is that its background write-amplification is far higher, and
this interferes with read performance. In contrast, all Spooky base-
lines significantly reduce write-amplification and thereby improve
both read and write throughput at the same time.

Tuning X. Figure 14 Part (D) explores different tunings of X for
Spooky under the leveling merge policy and a logical data size of
644GB. With X tuned to L — 1, the second largest level, the system
runs out of space and crashes since large files are merged at a time.
As we decrease X to L — 2 and L — 3, space requirements decrease
at a diminishing rate. With X set to L — 4, the system crashes due
to having too many open files (the limit in our OS is set to 1024).
Thus, setting X to L — 2 is sufficient for most practical purposes.

Larger Files Only Slightly Improve Partial Merge. It is tempting
to think that using larger files with Partial Merge would eliminate
GC overheads by causing larger units of data to be written and
erased all at once across SSD erase units. In Figure 15 Part (A), we
try three large file sizes. With 10GB and 5GB files, the database
crashed after exceeding the SSD storage capacity, and so the re-
spective curves are incomplete. The reason is that larger files entail
a higher transient space-amp that causes the physical data size to
vary widely, as evidenced by the noisier curves. Since 2GB files
were the largest we succeeded in finishing the experiment with, we
measure write-amp for Partial Merge with 2GB files in Figure 15
Part (B). GC overheads are slightly lower than in Figure 13 Part (C),
which uses 64MB files. However, these overheads are still consid-
erable and result in higher total write-amp than with Spooky. The



reason is that even with 2GB files, concurrent compactions cause
these files to become physically interspersed. These findings are
in line with contemporaneous work [11]. Overall, GC overheads
with Partial Merge are not a tuning issue but rather an intrinsic
problem, to which Spooky offers a novel solution.

Key Takeaway. Figure 1 measures total write-amp as we increase
storage utilization. The size ratio T is set to 10. Full Merge can-
not exceed a storage utilization of over 50%. Partial Merge reaches
80% storage utilization but its write-amp is exorbitant. In contrast,
Spooky matches Partial Merge in terms of storage utilization while
achieving, in this case, 3x lower total write-amp. Spooky is therefore
the best choice enabling excellent storage utilization and perfor-
mance at the same time.

7 RELATED WORK

Other Merge Policies. In addition to tiered/leveled merge policies
that offer logarithmic read/write scalability (see Sections 2 and 3),
other merge policies with different scalability trade-offs have been
proposed. Bounded depth merge policies fix the number of runs
to a constant to limit query costs, yet this causes write-amp to
increase more rapidly [63, 64]. In contrast, LSM-bush scales write-
amp at a slower rate of O(log log N) yet pays more in terms of query
costs. Both of these strains of merge policies have been described as
employing Full Merge, and so such policies can be readily combined
with Spooky to restrict transient space-amp.

Compaction Granulation Techniques. Since the tiered merge
policy was first deployed by Cassandra in conjunction with Full
Merge, several recent works propose finer granulation techniques
to limit transient space-amp specifically with tiering [73]. They
propose to partition the multiple runs at each level based on (1)
the hashes of keys [80], (2) randomly [69], (3) into equally-sized
files (or in other words using Partial Merge) [66, 92], or (4) based
on the file boundaries at the oldest run in the system [83, 84]. In
the context of bounded-depth policies, striped compaction, Striped
Compaction in Hbase performs full key-space partitioning

LSM-trie partitions the multiple runs at each level into perfectly
overlapping files based on the hashes of their keys, but it forgoes the
ability to perform range reads [80]. PebblesDB partitions the key
space randomly, which can occasionally result in excessively large
partitions [69]. Some designs partition runs into equally sized files
[66, 92], yet this leads to superfluous edge merging and thus higher
write-amp. LWC-tree [83, 84] partitions runs at smaller levels based
on file boundaries at larger levels while dividing files at larger levels
based on size. Still, LWC-tree does not prevent the system from
merging multiple partitions at once into the largest level, and so
the system may crash. In contrast, Spooky ensures only one large
merge operation happens at a time, while at the same time forcing
all writes within each level to be sequential to also restrict GC
garbage-collection. Furthermore, Spooky is generalized across the
whole space of merge policies rather than just tiering.

The partitioned exponential file is a collection of non-overlapping
leveled LSM-trees, each of which is allocated contiguously in the
LBA space [46]. As the sizes of partitions change, fragmentation is
created leading to either poorer storage utilization or higher write-
amp for de-fragmentation. Furthermore, no transient space-amp
guarantees are provided as multiple partitions may merge into their

largest level at the same time. Spooky avoids the first problem by
allocating data within each level through a layer of indirection, and
the second by merging into the largest level one partition at a time.
In addition, Spooky is applicable across all merge policies, and it
addresses the problem of SSD garbage-collection.

Richer Hardware. Zoned Namespaces (ZNS) [11, 17, 85], no-FTL
[77] and computational storage [68] have recently been proposed
for controlling the placement of LSM-tree data across erase blocks
within storage to cheapen garbage-collection. Spooky is also de-
signed to address the problem of SSD garbage-collection, yet it
does so through the standard block device interface. It is therefore
applicable across a wider range of storage devices. At the same time,
Spooky lends itself to ZNS and no-FTL by writing and disposing of
large swaths of data sequentially. Thus, Spooky can be integrated
with such schemes to further reduce garbage-collection overheads.

In addition, specialized hardware such as FPGAs [37, 91], hetero-
geneous storage [87], data processors [26], open-channel SSDs 78],
GPUs [5], and non-volatile memory [48, 52, 86] have all been pro-
posed as means of speeding up LSM-trees. Other hardware tech-
niques leverage multi-core CPUs [89], lock-free synchronization
[34] and distributed processing [2, 53]. Spooky is fully compatible
with these approaches in that its only task is to select which files to
merge. The execution of compaction is orthogonal and can easily
be performed on different types of hardware and storage.

Key-Value Separation. Recent work proposes to store the values
of data entries in an external log [15, 58, 81] or in a separate tiered
LSM-tree [55]. This improves write-amp while sacrificing scan per-
formance. Spooky can be combined with the LSM-tree component/s
in such designs for better write-amp vs. space-amp balances.

In-Memory Optimizations. Various optimizations have been
proposed for LSM-tree’s in-memory data structures including adap-
tive or learned caching [60, 79, 82], leaned fence pointers [18],
tiered buffering (7, 14], selective flushing [7], smarter Bloom filters
[19, 20, 88, 93, 95] or replacements thereof [25, 29, 44, 62, 70, 90, 91],
and materialized indexes for scans [94]. Spooky is fully comple-
mentary with such works as it only impacts the decision of which
files to merge and how to partition the output.

Performance Stability. Recent work focuses on maintaining stable
performance during compaction operations [59]. Various prioriti-
zation [8, 9, 47], synchronization [74], deamortization [10, 54], and
throttling techniques [56] have been proposed. Our Spooky imple-
mentation on RocksDB performs compaction on concurrent threads
to avoid blocking the application, yet it could benefit from these
more advanced techniques to more evenly schedule the overheads
of large compaction operations in time.

8 CONCLUSION

Existing methods for granulating LSM-tree compactions either
waste most of the available storage capacity or involve exorbitant
write-amplification. We introduce Spooky, the first approach to
achieve high storage utilization and moderate write-amplification
at the same time.
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